
গণিত

সপ্তম শ্রেণি

$$(a^m)^n = a^{mn}$$

ক্ষেত্ৰফল = ভূমি X উচ্চতা

জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড, বাংলাদেশ

জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড কর্তৃক ২০১৩ শিক্ষাবর্ষ থেকে সপ্তম শ্রেণির পাঠ্যপুস্তকর্নুপে নির্ধারিত

গণিত সপ্তম শ্ৰেণি

২০২৫ শিক্ষাবর্ষের জন্য পরিমার্জিত

জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড

৬৯-৭০, মতিঝিল বাণিজ্যিক এলাকা, ঢাকা-১০০০ কর্তৃক প্রকাশিত

[প্রকাশক কর্তৃক সর্বস্বত্ব সংরক্ষিত]

প্রথম সংস্করণ রচনা ও সম্পাদনা

ভ. মোঃ আবদুল মতিন ড. আব্দুস ছামাদ সালেহ্ মতিন ড. অমল হালদার ড.অম্ল্য চন্দ্র মঙল শেখ কুতুবউদ্দিন হামিদা বানু বেগম এ.কে.এম শহীদুল্লাহ্ মোঃ শাহজাহান সিরাজ

প্রথম প্রকাশ : সেপ্টেম্বর ২০১২ পরিমার্জিত সংস্করণ : সেপ্টেম্বর ২০১৪ পরিমার্জিত সংস্করণ : অক্টোবর ২০২৪

গণপ্রজাতন্ত্রী বাংলাদেশ সরকার কর্তৃক বিনামূল্যে বিতরণের জন্য

প্রসঙ্গ কথা

বর্তমানে প্রাতিষ্ঠানিক শিক্ষার উপযোগ বহুমাত্রিক। শুধু জ্ঞান পরিবেশন নয়, দক্ষ মানবসম্পদ গড়ে তোলার মাধ্যমে সমৃদ্ধ জাতিগঠন এই শিক্ষার মূল উদ্দেশ্য। একই সাথে মানবিক ও বিজ্ঞানমনন্ধ সমাজগঠন নিশ্চিত করার প্রধান অবলম্বনও প্রাতিষ্ঠানিক শিক্ষা। বর্তমান বিজ্ঞান ও প্রযুক্তিনির্ভর বিশ্বে জাতি হিসেবে মাথা তুলে দাঁড়াতে হলে আমাদের মানসম্মত শিক্ষা নিশ্চিত করা প্রয়োজন। এর পাশাপাশি শিক্ষার্থীদের দেশপ্রেম, মূল্যবোধ ও নৈতিকতার শক্তিতে উজ্জীবিত করে তোলাও জরুরি।

শিক্ষা জাতির মেরুদণ্ড আর প্রাতিষ্ঠানিক শিক্ষার প্রাণ শিক্ষাক্রম। আর শিক্ষাক্রম বাস্তবায়নের সবচেয়ে গুরুত্বপূর্ণ উপকরণ হলো পাঠ্যবই। জাতীয় শিক্ষানীতি ২০১০-এর উদ্দেশ্যসমূহ সামনে রেখে গৃহীত হয়েছে একটি লক্ষ্যাভিসারী শিক্ষাক্রম। এর আলোকে জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড (এনসিটিবি) মানসম্পন্ন পাঠ্যপুস্তক প্রণয়ন, মুদ্রণ ও বিতরণের কাজটি নিষ্ঠার সাথে করে যাচেছ। সময়ের চাহিদা ও বাস্তবতার আলোকে শিক্ষাক্রম, পাঠ্যপুস্তক ও মূল্যায়নপদ্ধতির পরিবর্তন, পরিমার্জন ও পরিশোধনের কাজটিও এই প্রতিষ্ঠান করে থাকে।

বাংলাদেশের শিক্ষার স্তরবিন্যাসে মাধ্যমিক স্তরটি বিশেষ গুরুত্বপূর্ণ। বইটি এই স্তরের শিক্ষার্থীদের বয়স, মানসপ্রবণতা ও কৌতৃহলের সাথে সংগতিপূর্ণ এবং একইসাথে শিক্ষাক্রমের লক্ষ্য ও উদ্দেশ্য অর্জনের সহায়ক। বিষয়জ্ঞানে সমৃদ্ধ শিক্ষক ও বিশেষজ্ঞগণ বইটি রচনা ও সম্পাদনা করেছেন। আশা করি বইটি বিষয়ভিত্তিক জ্ঞান পরিবেশনের পাশাপাশি শিক্ষার্থীদের মনন ও সৃজনের বিকাশে বিশেষ ভূমিকা রাখবে।

জ্ঞান-বিজ্ঞানের বিকাশে গণিতের ভূমিকা অতীব গুরুত্বপূর্ণ। পাশাপাশি ব্যক্তিগত জীবন থেকে শুরু করে পারিবারিক ও সামাজিক জীবনে গণিতের প্রয়োগ বর্তমান সময়ে অনেক বেড়েছে। এই সব বিষয় বিবেচনায় রেখে মাধ্যমিক পর্যায়ে সপ্তম শ্রেণির গণিত পাঠ্যপুস্তকটি সহজ ও সুন্দরভাবে উপস্থাপন করা হয়েছে এবং বেশ কিছু নতুন বিষয় এতে অন্তর্ভুক্ত করা হয়েছে।

পাঠ্যবই যাতে জবরদন্তিমূলক ও ক্লান্তিকর অনুষঙ্গ না হয়ে উঠে বরং আনন্দাশ্রয়ী হয়ে ওঠে, বইটি রচনার সময় সেদিকে সতর্ক দৃষ্টি রাখা হয়েছে। সর্বশেষ তথ্য-উপাত্ত সহযোগে বিষয়বন্তু উপস্থাপন করা হয়েছে। চেষ্টা করা হয়েছে বইটিকে যথাসম্ভব দুর্বোধ্যতামুক্ত ও সাবলীল ভাষায় লিখতে। ২০২৪ সালের পরিবর্তিত পরিস্থিতিতে প্রয়োজনের নিরিখে পাঠ্যপুন্তকসমূহ পরিমার্জন করা হয়েছে। এক্লেত্রে ২০১২ সালের শিক্ষাক্রম অনুযায়ী প্রণীত পাঠ্যপুন্তকের সর্বশেষ সংক্ষরণকে ভিত্তি হিসেবে গ্রহণ করা হয়েছে। বানানের ক্লেত্রে বাংলা একাডেমির প্রমিত বানানরীতি অনুসূত হয়েছে। যথাযথ সতর্কতা অবলম্বনের পরেও তথ্য-উপাত্ত ও ভাষাগত কিছু ভুলক্রটি থেকে যাওয়া অসম্ভব নয়। পরবর্তী সংক্ষরণে বইটিকে যথাসম্ভব ক্রটিমুক্ত করার আন্তরিক প্রয়াস থাকবে। এই বইয়ের মানোরয়নে যে কোনো ধরনের যৌক্তিক পরামর্শ কৃতজ্ঞতার সাথে গৃহীত হবে।

পরিশেষে বইটি রচনা, সম্পাদনা ও অলংকরণে যাঁরা অবদান রেখেছেন তাঁদের সবার প্রতি কৃতজ্ঞতা জানাই।

অক্টোবর ২০২৪

প্রফেসর ড. এ কে এম রিয়াজুল হাসান

চেয়ারম্যান জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড, বাংলাদেশ

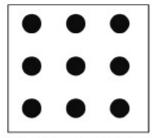
সূচিপত্র

অধ্যায়	শিরোনাম	পৃষ্ঠা
প্রথম	মূলদ ও অমূলদ সংখ্যা	2-29
দ্বিতীয়	সমানুপাত ও লাভ-ক্ষতি	25-09
তৃতীয়	পরিমাপ	৩৮–৪৯
চতুৰ্থ	বীজগণিতীয় রাশির গুণ ও ভাগ	¢0−⊎b
পথঃম	বীজগণিতীয় সূত্রাবলি ও প্রয়োগ	タター タタ
यर्छ	বীজগণিতীয় ভগ্নাংশ	pp-202
সণ্তম	সরল সমীকরণ	205-224
অফ্টম	সমান্তরাল সরলরেখা	254-455
নবম	<u> ব্রিভূজ</u>	\$29-\$88
দশম	সর্বসমতা ও সদৃশতা	\$8¢−\$ % \$
একাদশ	তথ্য ও উপাত্ত	১৬২–১৬৯
	উত্তরমালা	\$90−\$9¢
	পরিশিষ্ট	১৭৬–১৮৭

প্রথম অধ্যায়

মূলদ ও অমূলদ সংখ্যা

[এই অধ্যায়ের প্রয়োজনীয় পূর্বজ্ঞান বইয়ের শেষে পরিশিষ্ট অংশে সংযুক্ত আছে। প্রথমে পরিশিষ্ট অংশ পাঠ/আলোচনা করতে হবে।]


বৈচিত্র্যময় প্রকৃতির এই বৈচিত্র্য আমরা গণনা ও সংখ্যার সাহায্যে উপলব্ধি করি। পূর্ববর্তী শ্রেণিতে আমরা স্বাভাবিক সংখ্যা, পূর্ণসংখ্যা ও ভগ্নাংশ সম্পর্কে ধারণা পেয়েছি যা মূলদ সংখ্যা হিসেবে পরিচিত। এ সংখ্যাগুলোকে দুটি পূর্ণসংখ্যার অনুপাতে প্রকাশ করা যায়। সংখ্যাজগতে কিছু সংখ্যা রয়েছে যেগুলো দুটি পূর্ণসংখ্যার অনুপাতে প্রকাশ করা যায় না। এগুলো অমূলদ সংখ্যা নামে পরিচিত। এ অধ্যায়ে আমরা অমূলদ সংখ্যার সাথে পরিচিত হয়ে এদের প্রয়োগ সম্পর্কে আলোচনা করব।

অধ্যায় শেষে শিক্ষার্থীরা-

- সংখ্যার বর্গ ও বর্গমূল ব্যাখ্যা করতে পারবে।
- উৎপাদক ও ভাগ প্রক্রিয়ার মাধ্যমে বর্গমূল নির্ণয় করতে পারবে।
- সংখ্যার বর্গমূল নির্ণয় পদ্ধতিগুলো প্রয়োগ করে বাস্তব জীবনে সমস্যার সমাধান করতে পারবে।
- মূলদ ও অমূলদ সংখ্যা শনাক্ত করতে পারবে।
- সংখ্যারেখায় মূলদ ও অমূলদ সংখ্যার অবস্থান দেখাতে পারবে।

১-১ বর্গ ও বর্গমূল

বর্গ একটি আয়ত, যার বাহুগুলো পরস্পর সমান। বর্গের বাহুর দৈর্ঘ্য 'ক' একক হলে বর্গক্ষেত্রের ক্ষেত্রফল হবে (ক × ক) বর্গ একক বা ক' বর্গ একক। বিপরীতভাবে, বর্গক্ষেত্রের ক্ষেত্রফল ক' বর্গ একক হলে, এর প্রতিটি বাহুর দৈর্ঘ্য হবে 'ক' একক।

চিত্রে, ৯টি মার্বেলকে বর্গাকারে সাজানো হয়েছে। সমান দূরত্বে প্রতিটি সারিতে ৩টি করে ৩টি সারিতে মার্বেল সাজানো আছে এবং মোট মার্বেলের সংখ্যা ৩ × ৩ = ৩^২ = ৯। এখানে, প্রত্যেক সারিতে মার্বেলের সংখ্যা এবং সারির সংখ্যা সমান। তাই চিত্রটি বর্গাকৃতির হয়েছে। ফলে ৩ এর বর্গ ৯ এবং ৯ এর বর্গমূল ৩।

∴ কোনো সংখ্যাকে সেই সংখ্যা দ্বারা গুণ করলে যে গুণফল পাওয়া যায় তা ঐ সংখ্যার বর্গ এবং সংখ্যাটি গুণফলের বর্গমূল।

ফর্মা নং-১, গণিত-৭ম শ্রেণি

গণিত

১.২ পূর্ণবর্গ সংখ্যা

নিচের সারণিটি লক্ষ করি:

বর্গের বাহুর দৈর্ঘ্য (মি.)	বর্গের ক্ষেত্রফল (মি ^২)
2	$7 \times 7 = 7 = 7_{\leq}$
2	$2 \times 2 = 8 = 2^2$
٥	$\circ \times \circ = \delta = \circ^{<}$
œ	$@\times @= @= @^{2}$
٩	$9 \times 9 = 8 $ $\Rightarrow 9 $
a	$a \times a = a^2$

১, ৪, ৯, ২৫, ৪৯ সংখ্যাগুলোর বৈশিষ্ট্য হলো যে, এগুলোকে অন্য কোনো পূর্ণসংখ্যার বর্গ হিসেবে প্রকাশ করা যায়। ১, ৪, ৯, ২৫, ৪৯ সংখ্যাগুলো পূর্ণ বর্গসংখ্যা।

পূর্ণবর্গ সংখ্যার বর্গমূল একটি স্বাভাবিক সংখ্যা।

যেমন: ২১ এর বর্গ ২১^২ বা ৪৪১ একটি পূর্ণবর্গ সংখ্যা এবং ৪৪১ এর বর্গমূল ২১ একটি স্বাভাবিক সংখ্যা।

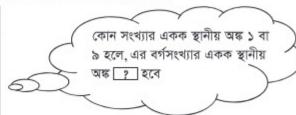
সাধারণভাবে একটি স্বাভাবিক সংখ্যা m কে যদি অন্য একটি স্বাভাবিক সংখ্যা n এর বর্গ (n^2) আকারে প্রকাশ করা যায় তবে m বর্গসংখ্যা । m সংখ্যাগুলোকে পূর্ণবর্গসংখ্যা বলা হয় ।

বর্গসংখ্যার ধর্ম

নিচের সারণিতে ১ থেকে ২০ সংখ্যার বর্গসংখ্যা দেওয়া হয়েছে। খালি ঘরগুলো পূরণ কর।

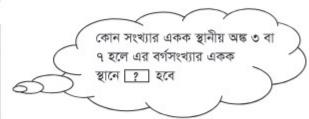
সংখ্যা	বর্গসংখ্যা	সংখ্যা	বৰ্গসংখ্যা	সংখ্যা	বর্গসংখ্যা	সংখ্যা	বর্গসংখ্যা
٥	٥	৬	৩৬	77	757	১৬	২৫৬
2	8	٩		25		29	২৮৯
9	8	Ъ	৬8	20	১৬৯	72	৩২৪
8		8	2.7	78	১৯৬	79	৩৬১
0	20	30		26		20	

সারণিভুক্ত বর্গসংখ্যাণ্ডলোর এককের ঘরের অঙ্কণ্ডলো ভালোভাবে পর্যবেক্ষণ করি। লক্ষ করি যে, এ সংখ্যাণ্ডলোর একক স্থানীয় অঙ্ক ০, ১, ৪, ৫, ৬ বা ৯। কোনো বর্গসংখ্যার একক স্থানে ২, ৩, ৭, বা ৮ অঙ্কটি নেই।


কাজ

- ১। কোনো সংখ্যার একক স্থানীয় অংক ০, ১, ৪, ৫, ৬, ৯ হলেই কি সংখ্যাটি বর্গসংখ্যা হবে?
- ২। নিচের সংখ্যাগুলোর কোনগুলো পূর্ণবর্গ সংখ্যা নির্ণয় কর। ২০৬২, ১০৫৭, ২৩৪৫৩, ৩৩৩৩৩, ১০৬৮
- ৩। পাঁচটি সংখ্যা লেখ যার একক স্থানের অঙ্ক দেখেই তা বর্গসংখ্যা নয় বলে সিদ্ধান্ত নেওয়া যায়।

মূলদ ও অমূলদ সংখ্যা


এবার সারণি থেকে একক স্থানে ১ রয়েছে এমন বর্গসংখ্যা নিই।

বৰ্গসংখ্যা	সংখ্যা
۵	۵
b-2	8
757	22
৩৬১	29

একইভাবে

বৰ্গসংখ্যা	সংখ্যা
8	٥
8৯	٩
১৬৯	20

এবং

বর্গসংখ্যা	সংখ্যা
১৬	8
৩৬	৬
১৯৬	28
২৫৬	১৬

- যে সংখ্যার সর্ব ডানদিকের অঙ্ক অর্থাৎ একক স্থানীয় অঙ্ক ২ বা ৩ বা ৭ বা ৮ তা পূর্ণবর্গ নয়।
- যে সংখ্যার শেষে বিজোড় সংখ্যক শূন্য থাকে, ঐ সংখ্যা পূর্ণবর্গ নয়।
- একক স্থানীয় অস্ক ১ বা ৪ বা ৫ বা ৬ বা ৯ হলে, ঐ সংখ্যা পূর্ণবর্গ হতে পারে। যেমন: ৮১, ৬৪, ২৫, ৩৬, ৪৯ ইত্যাদি বর্গসংখ্যা।
- আবার সংখ্যার ডানদিকে জোড়সংখ্যক শৃন্য থাকলে ঐ সংখ্যা পূর্ণবর্গ হতে পারে ৷ যেমন: ১০০, ৪৯০০ ইত্যাদি বর্গসংখ্যা ৷

কাজ

- ১। সারণি থেকে বর্গসংখ্যার একক স্থানে ৪ রয়েছে এরূপ সংখ্যার জন্য নিয়ম তৈরি কর।
- ২। নিচের সংখ্যাগুলোর বর্গসংখ্যার একক স্থানীয় অঙ্কটি কত হবে? ১২৭৩, ১৪২৬, ১৩৬৪৫, ৯৮৭৬৪৭৪, ৯৯৫৮০

নিচে বর্গমূলসহ কয়েকটি পূর্ণ বর্গসংখ্যার তালিকা দেওয়া হলো:

বৰ্গসংখ্যা	বৰ্গমূল	বৰ্গসংখ্যা	বৰ্গমূল	বৰ্গসংখ্যা	বৰ্গমূল
۵	2	৬8	ъ	২২৫	20
8	٤	4.7	৯	২৫৬	১৬
8	9	200	20	২৮৯	٩٤
১৬	8	757	77	৩২৪	70-
20	æ	788	25	৩৬১	४४
৩৬	৬	১৬৯	20	800	২০
8৯	٩	১৯৬	78	887	52

বর্গমূলের চিহ্ন

বর্গমূল প্রকাশের জন্য $\sqrt{}$ চিহ্ন ব্যবহৃত হয়। ২৫ এর বর্গমূল বোঝাতে লেখা হয় $\sqrt{}$ । আমরা জানি, ৫× ৫ = ২৫, কাজেই ২৫ এর বর্গমূল ৫।

কাজ : কয়েকটি বর্গস্যংখ্যার বর্গমূলের তালিকা তৈরি কর।

মৌলিক গুণনীয়কের সাহায্যে বর্গমূল নির্ণয়

১৬ কে মৌলিক গুণনীয়কে বিশ্লেষণ করে পাই

$$b = 2 \times 2 \times 2 \times 2 = (2 \times 2) \times (2 \times 2)$$

প্রতি জোড়া থেকে একটি করে গুণনীয়ক নিয়ে পাই ২ × ২ = 8

২ <u>৩৬</u> ২১৮ ৩৯

আবার, ৩৬ কে মৌলিক গুণনীয়কে বিশ্লেষণ করে পাই,

$$0b = 2 \times 2 \times 0 \times 0 = (2 \times 2) \times (0 \times 0)$$

প্রতি জোড়া থেকে একটি করে গুণনীয়ক নিয়ে পাই ২ × ৩ = ৬

৩৬ এর বর্গমূল =
$$\sqrt{৩৬} = ৬$$

লক্ষ করি : মৌলিক গুণনীয়কের সাহায্যে কোনো পূর্ণ বর্গসংখ্যার বর্গমূল নির্ণয় করার সময় —

- প্রথমে প্রদত্ত সংখ্যাটিকে মৌলিক গুণনীয়কে বিশ্লেষণ করতে হবে।
- প্রতি জোড়া একই গুণনীয়ককে একসাথে পাশাপাশি লিখতে হবে।
- প্রতি জোড়া এক জাতীয় গুণনীয়কের পরিবর্তে একটি গুণনীয়ক নিয়ে লিখতে হবে।
- প্রাপ্ত গুণনীয়কগুলোর ধারাবাহিক গুণফল হবে নির্ণেয় বর্গমূল।

মূলদ ও অমূলদ সংখ্যা

উদাহরণ ১। ৩১৩৬ এর বর্গমূল নির্ণয় কর।

সমাধান:

2020

এখানে, ৩১৩৬ $= 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 9 \times 9$ $= (2 \times 2) \times (2 \times 2) \times (2 \times 2) \times (9 \times 9)$

∴ ৩১৩৬ এর বর্গমূল = √৩১৩৬ = ২imes২imes২imes9

কাজ: গুণনীয়কের সাহায্যে ১০২৪ এবং ১৮৪৯ এর বর্গমূল নির্ণয় কর।

১.৩ ভাগের সাহায্যে বর্গমূল নির্ণয়

একটি উদাহরণ দিয়ে ভাগের সাহায্যে বর্গমূল নির্ণয়ের পদ্ধতি দেখানো হলো : উদাহরণ ২। ভাগের সাহায্যে ২৩০৪ এর বর্গমূল নির্ণয় কর : সমাধান

(১) ২৩০৪ সংখ্যাটি লিখি ২৩ ০৪

(২) ডানদিক থেকে দুটি করে অঙ্ক নিয়ে জোড়া করি। ২৩ ০৪ প্রত্যেক জোড়ার উপর রেখাচিহ্ন দিই :

(৩) ভাগের সময় যেমন খাড়া দাগ দেওয়া হয়, ২০ ০৪ । ডানপাশে তদ্ধুপ একটি খাড়া দাগ দিই :

(৪) প্রথম জোড়াটি ২৩। এর পূর্ববর্তী বর্গসংখ্যাটি ১৬, যার বর্গমূল √১৬ বা ৪; খাড়া দাগের ডানপাশে ৪ লিখি। এখন ২৩ এর ঠিক নিচে ১৬ লিখি:

20 08 8

(৭) ভাগফলের ঘরের সংখ্যা ৪ এর দ্বিগুণ ৪ × ২ বা ৮ নিচের খাড়া দাগের বামপাশে বসাই। ৮ এবং খাড়া দাগের মধ্যে একটি অন্ধ বসানোর মতো স্থান রাখি:

(৮) এখন একটি এক অঙ্কের সংখ্যা খুঁজে বের করি যাকে ৮ এর ডানপাশে বসিয়ে প্রাপ্ত সংখ্যাকে ঐ সংখ্যাটি দ্বারা গুণ করে ৭০৪ এর সমান বা অনূর্ধ্ব ৭০৪ পাওয়া যায়। এক্ষেত্রে ৮ হবে। ৮ সংখ্যাটি ভাগফলেও ৪ এর ডানপাশে বসাই।

(৯) ভাগফলের স্থানে পাওয়া গেল ৪৮। এটিই নির্ণেয় বর্গমূল।

লক্ষণীয় যে ভাগের সাহায্যে বর্গমূল নির্ণয় করার সময় সংখ্যার ডান দিক থেকে জোড় করতে গিয়ে শেষ অঙ্কের জোড় না থাকলে একে জোড়া ছাড়াই গণ্য করতে হবে।

উদাহরণ ৩। ভাগের সাহায্যে ৩১৬৮৪ এর বর্গমূল নির্ণয় কর।

সমাধান:

∴ ৩১৬৮৪ এর বর্গমূল = √৩১৬৮৪ = ১৭৮ নির্ণেয় বর্গমূল ১৭৮।

কাজ: ১। ভাগের সাহায্যে ১৪৪৪ এবং ১০৪০৪ এর বর্গমূল নির্ণয় কর।
২। ৫২৯, ৩৯২৫, ৫০৪১ এবং ৪৪৮৯ সংখ্যাগুলোর বর্গমূল সংখ্যার একক স্থানীয় অঙ্ক নির্ণয় কর।

বর্গসংখ্যা ও বর্গমূল সম্বন্ধে উল্লেখ্য বিষয়

 কোনো সংখ্যার একক স্থানীয় অঙ্ক থেকে শুরু করে বামদিকে এক অঙ্ক পরপর যতটি ফোঁটা দেওয়া যায়, এর বর্গমূলের সংখ্যাটি তত অঙ্কবিশিষ্ট। মূলদ ও অমূলদ সংখ্যা

नक्षणीय त्य,

$$\sqrt{55} = 8$$
 (এক অন্ধবিশিষ্ট, এখানে ফোঁটার সংখ্যা ১ কারণ, ৮ ১) $\sqrt{500} = 50$ (দুই অন্ধবিশিষ্ট, এখানে ফোঁটার সংখ্যা ২ কারণ, ১০০) $\sqrt{89058} = 259$ (তিন অন্ধবিশিষ্ট, এখানে ফোঁটার সংখ্যা ৩ কারণ, 89058)

কাজ: ৩১৩৬, ১২৩৪৩২১ এবং ৫২৯০০ সংখ্যাগুলোর বর্গমূল কত অঙ্কবিশিষ্ট তা নির্ণয় কর।

বর্গ ও বর্গমূল সংশ্লিষ্ট সমস্যা

উদাহরণ 8। ৮৬৫৫ থেকে কোন ক্ষুদ্রতম সংখ্যা বিয়োগ করলে বিয়োগফল একটি পূর্ণ বর্গসংখ্যা হবে?

এখানে, ৮৬৫৫ এর বর্গমূল ভাগের সাহায্যে নির্ণয় করতে গিয়ে ৬ অবশিষ্ট থাকে। সূতরাং প্রদত্ত সংখ্যা থেকে ৬ বাদ দিলে প্রাপ্ত সংখ্যাটি পূর্ণ বর্গসংখ্যা হবে। নির্ণেয় ক্ষুদ্রতম সংখ্যা ৬

উদাহরণ ৫। ৬৫১২০১ এর সাথে কোন ক্ষুদ্রতম সংখ্যা যোগ করলে যোগফল একটি পূর্ণ বর্গসংখ্যা হবে?

যেহেতু সংখ্যাটির বর্গমূল নির্ণয় করার সময় ভাগশেষ ১৫৬৫ আছে। কাজেই প্রদন্ত সংখ্যাটি পূর্ণ বর্গসংখ্যা নয়। ৬৫১২০১ এর সাথে কোনো ক্ষুদ্রতম সংখ্যা যোগ করলে যোগফল পূর্ণবর্গ হবে এবং তখন এর বর্গমূল হবে

bob + > = bo9

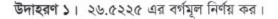
৮০৭ এর বর্গ = ৮০৭ × ৮০৭ = ৬৫১২৪৯

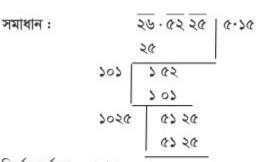
চ গণিত

অনুশীলনী ১.১

۱ د	মৌলিক গুণনীয়কের সাহায্যে বর্গমূল নির্ণয় কর:						
	(호) 269	(খ) ৫২৯	(গ) ১৫২১	(ঘ) ১১০২৫			
२ ।	ভাগের সাহায্যে ব	র্গমূল নির্ণয় কর :					
	(ক) ২২৫	(খ) ৯৬১	(গ) ৩৯৬৯	(ঘ) ১০৪০৪			
91	নিচের সংখ্যাগুলো	কে কোন ক্ষুদ্রতম সংখ্যা দ্ব	রা গুণ করলে গুণফল পূ	র্ণবর্গ সংখ্যা হবে?			
	(ক) ১৪৭	(খ) ৩৮৪	(গ) ১৪৭০	(ঘ) ২৩৮০৫			
8	নিচের সংখ্যাগুলো	াকে কোন ক্ষুদ্রতম সংখ্যা দ্ব	ারা ভাগ করলে ভাগফল	পূৰ্ণবৰ্গ সংখ্যা হবে?			
	(ক) ৯৭২	(খ) ৪০৫৬	(গ) ২১৯৫২				
Œ I	৪৬৩৯ থেকে কো	ন ক্ষুদ্ৰতম সংখ্যা বিয়োগ ব	বলে বিয়োগফল একটি	পূৰ্ণ বৰ্গসংখ্যা হবে?			

১-৪ দশমিক ভগ্নাংশের বর্গমূল নির্ণয়


পূর্ণসংখ্যা বা অখণ্ড সংখ্যার বর্গমূল ভাগের সাহায্যে যেভাবে নির্ণয় করা হয়েছে, দশমিক ভগ্নাংশের বর্গমূলও সেই নিয়মেই নির্ণয় করা হয়। দশমিক ভগ্নাংশের দুটি অংশ থাকে। দশমিক বিন্দুর বামদিকের অংশকে অখণ্ড বা পূর্ণ অংশ এবং দশমিক বিন্দুর ডানপাশের অংশকে দশমিক অংশ বলা হয়।

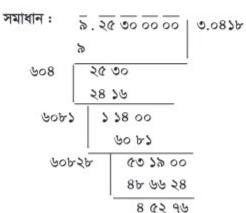

৬। ৫৬০৫ এর সাথে কোন ক্ষুদ্রতম সংখ্যা যোগ করলে যোগফল একটি পূর্ণ বর্গসংখ্যা হবে?

বর্গমূল করার নিয়ম

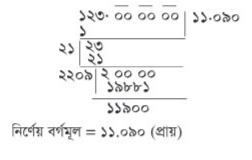
- অখণ্ড অংশে একক থেকে ক্রমান্বয়ে বামদিকে প্রতি দুই অঙ্কের উপর দাগ দিতে হয়।
- দশমিক অংশে দশমিক বিন্দুর ডানপাশের অন্ধ থেকে শুরু করে ডানদিকে ক্রমান্বয়ে জোড়ায় জোড়ায় দাগ দিতে হয়। এর্পে যদি দেখা যায় সর্বশেষে মাত্র একটি অন্ধ বাকি আছে, তবে তারপরে একটি শূন্য বসিয়ে দুই অন্ধের উপর দাগ দিতে হয়।
- সাধারণ নিয়মে বর্গমূল নির্ণয়ের প্রক্রিয়ায় অখণ্ড অংশের কাজ শেষ করে দশমিক বিন্দুর পরের প্রথম দুটি অঙ্ক নামানোর আগেই বর্গমূলে দশমিক বিন্দু দিতে হয়।
- দশমিক বিন্দুর এক জোড়া শূন্যের জন্য বর্গমূলে দশমিক বিন্দুর পর একটি শূন্য দিতে হয়।

মূলদ ও অমূলদ সংখ্যা

876


নিৰ্ণেয় বৰ্গমূল = ০ • ০৫৪

নিৰ্ণেয় বৰ্গমূল = ৫٠১৫


বর্গমূলের আসন্ন মান নির্ণয়

তিন দশমিক স্থান পর্যন্ত বর্গমূল নির্ণয় করতে হলে, সংখ্যার দশমিক বিন্দুর পর কমপক্ষে ৬টি অঙ্ক নিতে হয়। দরকার হলে ডানদিকের শেষ অঙ্কের পর প্রয়োজনমতো শূন্য বসাতে হয়। এতে সংখ্যার মানের পরিবর্তন হয় না।

উদাহরণ ৩। ৯·২৫৩ এর বর্গমূল তিন দশমিক স্থান পর্যন্ত আসন্ধ মান নির্ণয় কর। উদাহরণ ৪। ১২৩ এর বর্গমূল দুই দশমিক স্থান পর্যন্ত নির্ণয় কর।

সমাধান :

নির্ণেয় বর্গমূল = ৩٠০৪২ (প্রায়)

দুষ্টব্য : উপরের বর্গমূলে দশমিকের পর চতুর্থ অঙ্কটি ৮ হওয়ায় তৃতীয় অঙ্কটির সাথে ১ যোগ করে নির্ণেয় বর্গমূলের (তিন দশমিক স্থান পর্যন্ত আসন্ন মান হল ৩∙০৪২।

- দুই দশমিক স্থান পর্যন্ত বর্গমূল নির্ণয় করতে হলে, তিন দশমিক স্থান পর্যন্ত বর্গমূল নির্ণয় করতে হবে।
- বর্গমূলে যত দশমিক স্থান পর্যন্ত নির্ণয় করতে হবে এর পরের অঙ্কটি ০, ১, ২, ৩ বা ৪ হলে
 পূর্বের অঙ্কের সাথে ১ যোগ হবে না।
- বর্গমূলে যত দশমিক স্থান পর্যন্ত নির্ণয় করতে হবে এর পরের অঙ্কটি ৫, ৬, ৭, ৮ বা ৯ হলে
 পূর্বের অঙ্কের সাথে ১ যোগ হবে।

ফর্মা নং-২, গণিত-৭ম শ্রেণি

১০

কাজ: ১। ৫০-৬৯৪৪ এর বর্গমূল নির্ণয় কর।
২। ৭-১২ এর বর্গমূল দুই দশমিক স্থান পর্যন্ত নির্ণয় কর।

১-৫ পূর্ণবর্গ ভগ্নাংশ

$$\frac{(c)}{c}$$
 কে লঘিষ্ঠ আকারে লিখে পাই $\frac{2(c)}{2c}$

এখানে, $\frac{2\ell}{36}$ ভগ্নাংশের লব ২৫ একটি পূর্ণ বর্গসংখ্যা এবং হর ১৬ একটি পূর্ণ বর্গসংখ্যা। সুতরাং $\frac{2\ell}{36}$ একটি পূর্ণবর্গ ভগ্নাংশ।

∴ কোনো ভগ্নাংশের লব ও হর পূর্ণ বর্গসংখ্যা বা ভগ্নাংশকে লঘিষ্ঠ আকারে পরিণত করলে যদি তার লব ও হর পূর্ণ বর্গসংখ্যা হয়, তবে ঐ ভগ্নাংশকে পূর্ণবর্গ ভগ্নাংশ বলা হয়।

১.৬ ভগ্নাংশের বর্গমূল

ভগ্নাংশের লবের বর্গমূলকে হরের বর্গমূল দ্বারা ভাগ করলে ভগ্নাংশের বর্গমূল পাওয়া যায়।

সমাধান : ভগ্নাংশটির লব ৬৪ এর বর্গমূল = $\sqrt{68}$ = ৮

এবং হর ৮১ এর বর্গমূল = $\sqrt{৮১} = ১$

$$\therefore \quad \frac{8}{8}$$
 এর বর্গমূল = $\sqrt{\frac{8}{8}} = \frac{8}{8}$

নির্ণেয় বর্গমূল 💍 ১

উদাহরণ ৬। ৫২ — এর বর্গমূল নির্ণয় কর। ১৬

সমাধান : ৫২
$$\frac{\delta}{56}$$
 এর বর্গমূল = $\sqrt{62\frac{\delta}{56}}$ = $\sqrt{\frac{685}{56}}$ = $\frac{2\delta}{8}$ = $9\frac{5}{8}$

ভগ্নাংশের হর যদি পূর্ণ বর্গসংখ্যা না হয়, তবে গুণন দ্বারা একে পূর্ণবর্গ করে নিতে হয়।

মূলদ ও অমূলদ সংখ্যা ১১

উদাহরণ ৭। ২ — এর বর্গমূল তিন দশমিক স্থান পর্যন্ত নির্ণয় কর। ১৫

সমাধান : ২
$$\frac{b}{\lambda c}$$
 এর বর্গমূল
$$= \sqrt{2 \frac{b}{\lambda c}} = \sqrt{\frac{0b}{\lambda c}} = \sqrt{\frac{0b \times \lambda c}{\lambda c \times \lambda c}}$$
$$= \sqrt{\frac{c \cdot 90}{22c}} = \frac{20 \cdot b \cdot 989}{\lambda c} = \lambda \cdot c \cdot 5 \cdot b \cdot (2013)$$

∴ আসন্ন তিন দশমিক স্থান পর্যন্ত বর্গমূল = ১٠৫৯২ (প্রায়)

কাজ : ১। ২৭
$$\dfrac{8 \, extsf{ iny 60}}{8 \, extsf{ iny 60}}$$
 এর বর্গমূল নির্ণয় কর। ২। ১ $\dfrac{8}{c}$ এর বর্গমূল দুই দশমিক স্থান পর্যন্ত নির্ণয় কর।

১-৭ মূলদ ও অমূলদ সংখ্যা

১,২,৩,৪, ইত্যাদি স্বাভাবিক সংখ্যা। সংখ্যাগুলোকে দুটি স্বাভাবিক সংখ্যার ভগ্নাংশ আকারে নিমুরূপে লেখা যায়।

$$\lambda = \frac{\lambda}{\lambda}, \, \lambda = \frac{\lambda}{\lambda}, \, \delta = \frac{\delta \times \lambda}{\lambda} = \frac{\delta}{\lambda}, \, \dots$$
 ইত্যাদি।

আবার, ০০১, ১০৫, ২০০৩, ইত্যাদি দশমিক সংখ্যা।

এখানে,

০-১ =
$$\frac{5}{50}$$
, ১-৫ = $\frac{50}{50}$, ২-০৩ = $\frac{500}{500}$ যা সংখ্যাণ্ডলোর ভগ্নাংশ আকার।

আবার, $o = \frac{o}{\lambda}$, একটি ভগ্নাংশ সংখ্যা।

উপরে বর্ণিত সংখ্যাগুলো মূলদ সংখ্যা।

অতএব, শূন্য, সকল স্বাভাবিক সংখ্যা ও ভগ্নাংশ সংখ্যা মূলদ সংখ্যা।

গণিত

উদাহরণ ৮। ০০১২, $\sqrt{2}$ ৫, $\sqrt{9}$ ২, $\frac{\sqrt{8}}{9}$ সংখ্যাগুলো থেকে অমূলদ সংখ্যা বাছাই কর।

সমাধান : এখানে, ০০১২ = $\frac{52}{500} = \frac{5}{20}$; যা একটি ভগ্নাংশ সংখ্যা

$$\sqrt{2\alpha} = \sqrt{\alpha^2} = \alpha$$
, যা একটি স্বাভাবিক সংখ্যা

$$\sqrt{92}=\sqrt{2 imes 96}=\sqrt{2 imes 96}=9\sqrt{2}$$
; যা ভগ্নাংশ আকারে লেখা যায় না।

এবং
$$\frac{\sqrt{85}}{9} = \frac{\sqrt{9^2}}{9} = \frac{9}{9} = 5$$
; যা একটি স্বাভাবিক সংখ্যা।

$$\cdot$$
 ০০১২, $\sqrt{2\alpha}$, $\frac{\sqrt{88}}{9}$ মূলদ সংখ্যা এবং $\sqrt{92}$ অমূলদ সংখ্যা।

কাজ : ১ $\frac{3}{2}$, $\sqrt{\frac{8}{2e}}$, $\sqrt{\frac{29}{3e}}$, ১ \cdot ০৫৬৩, $\sqrt{22}$, $\sqrt{323}$ সংখ্যাগুলো থেকে মূলদ ও অমূলদ সংখ্যা বের কর।

১.৮ সংখ্যারেখায় মূলদ ও অমূলদ সংখ্যাকে প্রকাশ

সংখ্যারেখার মূলদ সংখ্যা

নিচের সংখ্যারেখাটি লক্ষ করি:

উপরের সংখ্যারেখাটিতে গাঢ় চিহ্নিত বৃত্তটি ২ এর অবস্থান নির্দেশ করে।

আবার,

উপরের সংখ্যারেখাটিতে গাঢ় চিহ্নিত বৃত্তিটির অবস্থান ১ ও ২ এর মাঝে। গাঢ় চিহ্নিত অংশটুকু ৪ ভাগের ৩ অংশ। সুতরাং চিহ্নিত অংশটি ১ + $\frac{\circ}{8}$ বা ১ $\frac{\circ}{8}$ নির্দেশ করে।

সংখ্যারেখায় অমূলদ সংখ্যা

 $\sqrt{9}$ একটি অমূলদ সংখ্যা যেখানে, $\sqrt{9} = 5 \cdot 992 \dots = 5 \cdot 9$ (আসন্ন মান)। এবার সংখ্যারেখায় ১ ও ২ এর মাঝের অংশকে সমান ১০ অংশে ভাগ করে সপ্তম অংশটি গাঢ় করি যার

আসন্ন মান ১.৭ তথা √ত নির্দেশ করে।

অতএব গাঢ় চিহ্নিত বৃত্তটি সংখ্যারেখায় $\sqrt{\circ}$ অবস্থান।

কাজ: ১। সংখ্যা রেখায় ৩, $\frac{3}{2}$, ১.৪৫৫ এবং $\sqrt{\alpha}$ সংখ্যাগুলো প্রকাশ কর।

মূলদ ও অমূলদ সংখ্যা

উদাহরণ ৯। কোনো বাগানে ১২৯৬টি আমগাছ আছে। বাগানের দৈর্ঘ্য ও প্রস্তের উভয় দিকের প্রত্যেক সারিতে সমান সংখ্যক আমগাছ থাকলে প্রত্যেক সারিতে গাছের সংখ্যা নির্ণয় কর।

সমাধান : বাগানের দৈর্ঘ্য ও প্রস্তের উভয় দিকের প্রত্যেক সারিতে সমান সংখ্যক আমগাছ আছে।

∴ প্রত্যেক সারিতে আমগাছের সংখ্যা হবে ১২৯৬ এর বর্গমূল।

নির্ণেয় আমগাছের সংখ্যা ৩৬ টি।

উদাহরণ ১০। একটি স্কাউট দলকে ৯, ১০, এবং ১২ সারিতে সাজানো যায়। আবার তাদের বর্গাকারেও সাজানো যায়। ঐ স্কাউট দলে কমপক্ষে কতজন স্কাউট রয়েছে?

সমাধান : স্কাউট দলকে ৯, ১০ এবং ১২ সারিতে সাজানো যায়। ফলে স্কাউট এর সংখ্যা ৯, ১০ এবং ১২ দারা বিভাজ্য। এরূপ ক্ষুদ্রতম সংখ্যা হবে ৯, ১০ এবং ১২ এর ল.সা.গু.।

- ∴ ৯, ১০ এবং ১২ এর ল.সা.ভ. = ২ × ২ × ৩ × ৩ × ৫ = (২ × ২) × (৩ × ৩) × ৫ প্রাপ্ত ল.সা.ভ. (২ × ২) × (৩ × ৩) × ৫ কে বর্গাকারে সাজানো যায় না। (২ × ২) × (৩ × ৩) × ৫ কে বর্গসংখ্যা করতে হলে কমপক্ষে ৫ দ্বারা গুণ করতে হবে।
- ∴ ৯, ১০ এবং ১২ সারিতে এবং বর্গাকারে সাজানোর জন্য স্কাউট এর সংখ্যা প্রয়োজন
 (২ × ২) × (৩ × ৩) × (৫ × ৫) = ৯০০

নির্ণেয় স্কাউট এর সংখ্যা ৯০০।

গণিত

উদাহরণ ১১। ২১৯৫২ এবং ৫৬০৫ দুটি সংখ্যা।

- (ক) প্রথম সংখ্যাটি কী পূর্ণবর্গ সংখ্যা যুক্তি দাও।
- (খ) প্রথম সংখ্যাটি যদি পূর্ণবর্গ না হয়, তবে একে কোন ক্ষুদ্রতম সংখ্যা দ্বারা ভাগ করলে পূর্ণবর্গ সংখ্যা হবে।
- (গ) দিতীয় সংখ্যাটির সাথে কোন ক্ষুদ্রতম সংখ্যা যোগ করলে, যোগফল একটি পূর্ণবর্গ সংখ্যা

সমাধান : (ক) যে সংখ্যার সর্ব ডানদিকের অঙ্ক অর্থাৎ একক স্থানীয় অঙ্ক ২ বা ৩ বা ৭ বা ৮ তা পূর্ণবর্গ নয়। যেহেতু ২১৯৫২ সংখ্যাটির একক স্থানীয় অঙ্কটি ২ সেহেতু সংখ্যাটি পূর্ণবর্গ নয়।

> (খ) এখানে,

সুতরাং ২১৯৫২= ২×২ ×২×২×২×৭×৭×৭ ২১৯৫২ সংখ্যাটি পূর্ণবর্গ নয়। সংখ্যাটিকে ৭ দ্বারা ভাগ করলে প্রাপ্ত সংখ্যাটি পূর্ণবর্গ হবে। উত্তর: ৭

যেহেতু সংখ্যাটির বর্গমূল নির্ণয় করার সময় ভাগশেষ ১২৯ আছে সেহেতু সংখ্যাটি পূর্ণবর্গ নয়। ৫৬০৫ এর সাথে কোনো একটি ক্ষুদ্রতম সংখ্যা যোগ করলে যোগফল পূর্ণবর্গ হবে।

সুতরাং, নির্ণেয় ক্ষুদ্রতম সংখ্যাটি=৫৬২৫-৫৬০৫=২০

উত্তর : ২০

2020

অনুশীলনী ১-২

21	২৮৯	্গুর	বৰ্গমূল	ক্ত
2	৩৬১	অস	ব্যক্র	4.0

(호) <mark>가</mark> (최) <mark>가</mark>

(এ) <mark>১৯</mark>

২। ১-১০২৫ এর বর্গমূল কত?

(∅) 7.€

(খ) ১.০০৫

(গ) ১.০৫

(ঘ) ০-০৫

৩। একটি মূলদ সংখ্যা হলো-

(i) o

(ii) ¢

নিচের কোনটি সঠিক?

(ক) i ও ii (খ) i ও iii (গ) ii ও iii (ঘ) i, ii ও iii

দুটি ক্রমিক সংখ্যার বর্গের অন্তর ১৯।

এই তথ্য থেকে ৪ ও ৫ নং প্রশ্নের উত্তর দাও।

একটি সংখ্যা ১০ হলে অপরটি কত? 8 |

১২ (খ) ১১

(গ) ৯

(ঘ)

সংখ্যা দুটির বর্গের যোগফল কত?

২৮১ (খ) ২২১

(গ) ১৮১

(ঘ)

০.০১ এর বর্গমূল নিচের কোনটি? 31

০.০১ (খ) ০.১

(গ) ০.০০১ (ম) ০.০০০১

১৬৪

কোনো সংখ্যার একক স্থানীয় অংক ২ বা ৮ হলে তার বর্গসংখ্যার একক স্থানীয় অঙ্কটি হবে-

(뉙) 8

(গ) 6 (ঘ)

৩ × ৭ × ৫ × ৭ × ৩ কে কত দ্বারা গুণ বা ভাগ করলে পূর্ণ বর্গসংখ্যা হবে?

(ক) ৩ (খ) ৫

(গ)

৯। নিচের কোনটি অমূলদ সংখ্যা

(ক) $\sqrt{2}$ (খ) $\sqrt{5}$ (গ) $\sqrt{36}$ (ঘ) $\sqrt{26}$

গণিত 36

১০। একজন কৃষক বাগান করার জন্য ৫৯৫টি চারাগাছ কিনে আনেন। প্রত্যেকটি চারাগাছের মূল্য ১২ টাকা।

- (ক) চারাগাছগুলো কিনতে তাঁর কত খরচ হয়েছে?
- (খ) বাগানে প্রত্যেক সারিতে সমান সংখ্যক গাছ লাগানোর পর কয়টি চারাগাছ অবশিষ্ট থাকবে?
- (গ) খরচের টাকার সংখ্যা ও চারাগাছের সংখ্যার বিয়োগফলের সাথে কোন ক্ষুদ্রতম সংখ্যা যোগ করলে যোগফল একটি পূর্ণ বর্গসংখ্যা হবে?
- ১১। বর্গমূল নির্ণয় কর।

- (ক) ০·৩৬ (খ) ২·২৫ (গ) ০·০০৪৯ (ঘ) ৬৪১-১০২৪
- (8) 0·000695
- (P) 788·P87556
- ১২। দুই দশমিক স্থান পর্যন্ত বর্গমূল নির্ণয় কর।
 - (ক) ৭
- (খ) ২৩-২৪ (গ) ০-০৩৬
- ১৩। নিচের ভগ্নাংশগুলোর বর্গমূল নির্ণয় কর।

- (ক) $\frac{7}{2}$ (খ) $\frac{89}{25}$ (গ) $\frac{1}{2}$ (গ) $\frac{1}{2}$
- ১৪। তিন দশমিক স্থান পর্যন্ত বর্গমূল নির্ণয় কর
- $(3) \frac{6}{9} \qquad (3) < \frac{6}{9} \qquad (4) < \frac{6}{9} \qquad (4) < \frac{6}{9}$
- ১৫। ৫৬৭২৮জন সৈন্য থেকে কমপক্ষে কতজন সৈন্য সরিয়ে রাখলে বা তাদের সাথে কমপক্ষে আর কতজন সৈন্য যোগ দিলে সৈন্যদলকে বর্গাকারে সাজানো যাবে?
- ১৬। কোনো বিদ্যালয়ের ২৭০৪জন শিক্ষার্থীকে প্রাত্যহিক সমাবেশ করার জন্য বর্গাকারে সাজানো হলো। প্রত্যেক সারিতে শিক্ষার্থীর সংখ্যা নির্ণয় কর।
- ১৭। একটি সমবায় সমিতির যতজন সদস্য ছিল প্রত্যেকে তত ২০ টাকা করে চাঁদা দেওয়ায় মোট ২০৪৮০ টাকা হলো। ঐ সমিতির সদস্য সংখ্যা নির্ণয় কর।
- ১৮। কোনো বাগানে ১৮০০ টি চারাগাছ বর্গাকারে লাগাতে গিয়ে ৩৬টি গাছ বেশি হলো। প্রত্যেক সারিতে চারাগাছের সংখ্যা নির্ণয় কর।
- ১৯। কোন ক্ষুদ্রতম পূর্ণ বর্গসংখ্যা ৯, ১৫ এবং ২৫ দ্বারা বিভাজ্য?
- ২০। একটি ধানক্ষেতের ধান কাটতে শ্রমিক নেওয়া হলো। প্রত্যেক শ্রমিকের দৈনিক মজুরি তাদের সংখ্যার ১০ গুণ। দৈনিক মোট মজুরি ৬২৫০ টাকা হলে শ্রমিকের সংখ্যা বের কর।
- ২১। দুটি ক্রমিক সংখ্যার বর্গের অন্তর ৩৭ হলে, সংখ্যা দুটি নির্ণয় কর।
- ২২। এমন দুটি ক্ষুদ্রতম ক্রমিক সংখ্যা নির্ণয় কর যাদের বর্গের অন্তর একটি পূর্ণ বর্গসংখ্যা।

মূলদ ও অমূলদ সংখ্যা

- ২৩। ৩৮৪ এবং ২১৮৭ দুটি সংখ্যা।
 - প্রথম সংখ্যাটি পূর্ণবর্গ সংখ্যা কিনা উৎপাদকের সাহায্যে যাচাই কর।
 - (খ) দিতীয় সংখ্যাটি যদি পূর্ণবর্গ না হয় তবে, কোন ক্ষুদ্রতম সংখ্যা দিয়ে গুণ করলে এটি একটি পূর্ণবর্গ সংখ্যা হবে? পূর্ণবর্গ সংখ্যাটি কত?
 - (গ) দ্বিতীয় সংখ্যাটির সাথে কত যোগ করলে এটি একটি পূর্ণবর্গ সংখ্যা হবে?
- ২৪। একটি সৈন্যদলকে ৬,৭,৮ সারিতে সাজানো যায়, কিন্তু বর্গাকারে সাজানো যায় না।
 - (ক) ৮ এর গুণনীয়কগুলো বের কর।
 - (খ) সৈন্য সংখ্যাকে কোন ক্ষুদ্রতম সংখ্যা দ্বারা গুণ করলে সৈন্য সংখ্যাকে বর্গাকারে সাজানো যাবে?
 - (গ) ঐ দলে কমপক্ষে কতজন সৈন্য যোগ দিলে সৈন্যদলকে বর্গাকারে সাজানো যাবে?

দ্বিতীয় অধ্যায়

সমানুপাত ও লাভ-ক্ষতি

আমরা প্রতিদিন এমন অনেক সমস্যার মুখোমুখি হই, যেগুলো অনুপাত ও সমানুপাতের ধারণা ব্যবহার করে সহজেই সমাধান করা যায়। তাই শিক্ষার্থীদের অনুপাত ও সমানুপাতের ধারণা ও এর প্রয়োগের দক্ষতা অর্জন করা দরকার। একইভাবে, আমাদের দৈনদিন জীবনে অনেকখানি জায়গা জুড়ে আছে লেনদেন আর যার সাথে জড়িত লাভ-ক্ষতি। এ কারণে লাভ-ক্ষতি সম্পর্কে শিক্ষার্থীদের পরিক্ষার ধারণা থাকা প্রয়োজন। তাই এ অধ্যায়ে অনুপাত-সমানুপাত ও লাভ-ক্ষতি সম্পর্কিত বিষয় আলোচনা করা হয়েছে।

অধ্যায় শেষে শিক্ষার্থীরা –

- বহুরাশিক ও ধারাবাহিক অনুপাত ব্যাখ্যা করতে পারবে।
- সমানুপাতের ধারণা ব্যাখ্যা করতে পারবে ।
- সমানুপাত সংক্রান্ত সমস্যা সমাধান করতে পারবে ।
- লাভ-ক্ষতি কী তা ব্যাখ্যা করতে পারবে।
- লাভ-ক্ষতি সংক্রান্ত সমস্যার সমাধান করতে পারবে ।
- কর, ভ্যাট, কমিশন ও মুদ্রাবিনিময় সংক্রান্ত দৈনন্দিন জীবনের সমস্যা সমাধান করতে পারবে ।
- ঐকিক ও অনুপাত ব্যবহার করে বাস্তব জীবনে সময় ও কাজ, নল ও চৌবাচ্চা, সময় ও দ্রত্ব এবং নৌকা ও শ্রোত বিষয়ক সমস্যা সমাধান করতে পারবে।

২-১ বহুরাশিক অনুপাত ও ধারাবাহিক অনুপাত

বহুরাশিক অনুপাত : মনে করি, একটি বাল্গের দৈর্ঘ্য, প্রস্থ ও উচ্চতা যথাক্রমে ৮ সে.মি., ৫ সে.মি. ও ৬ সে.মি.

দৈর্ঘ্য, প্রস্থ ও উচ্চতার অনুপাত = ৮ : ৫ : ৬

সংক্ষেপে, দৈর্ঘ্য : প্রস্থ : উচ্চতা = ৮ : ৫ : ৬

এখানে তিনটি রাশির অনুপাত উপস্থাপন করা হয়েছে। এরূপ তিন বা ততোধিক রাশির অনুপাতকে **বহুরাশিক** অনুপাত বলে।

ধারাবাহিক অনুপাত : মনে করি, পুত্র ও পিতার বয়সের অনুপাত = ১৫ : ৪১ (পূর্ব রাশি: উত্তর রাশি)

এবং পিতা ও দাদার বয়সের অনুপাত = 8\; ৬৫

দুটি অনুপাতকে একত্র করে পাই, পুত্রের বয়স: পিতার বয়স: দাদার বয়স = ১৫: ৪১: ৬৫। এ ধরনের অনুপাতকে ধারাবাহিক অনুপাত বলে। এখানে লক্ষণীয় যে, প্রথম অনুপাতের উত্তর রাশি ও দ্বিতীয় অনুপাতের পূর্ব রাশি সমান। প্রথম অনুপাতের উত্তর রাশি ও দ্বিতীয় অনুপাতের পূর্ব রাশি সমান না হলে তাদেরকে সমান করে ধারাবাহিক অনুপাত বের করতে হয়।

দুটি অনুপাতকে ধারাবাহিক অনুপাতে রূপান্তরের জন্য প্রথম অনুপাতের উত্তর রাশি দ্বারা দ্বিতীয় অনুপাতের উত্তর রাশিকে গুণ করতে হবে এবং দ্বিতীয় অনুপাতের পূর্ব রাশি দ্বারা প্রথম অনুপাতের উত্তর রাশিকে গুণ করতে হবে।

সমানুপাত ও লাভ-ক্ষতি

উদাহরণ ১। ৭ : ৫ এবং ৮ : ৯ দুটি অনুপাত। এদেরকে ধারাবাহিক অনুপাতে প্রকাশ কর।

∴ অনুপাত দুটির ধারাবাহিক অনুপাত ৫৬ : ৪০ : ৪৫

কাজ:

নিচের অনুপাতগুলোকে ধারাবাহিক অনুপাতে প্রকাশ কর।

১। ১২:১৭ এবং ৫:১২

৪।৫:৮ এবং ১২:১৭

২। ২৩:১১ এবং ৭:১৩

৩। ১৯:২৫ এবং ৯:১৭

২-২ সমানুপাত

মনে করি, সোহাগ কোনো দোকান থেকে ১০ টাকা দিয়ে একটি চিপসের প্যাকেট এবং ২৫ টাকা দিয়ে ১ কেজি লবণ কিনল। এখানে লবণ ও চিপস্ এর দামের অনুপাত = ২৫ : ১০ বা ৫ : ২।

আবার, সোহাগদের শ্রেণিতে শিক্ষার্থীর সংখ্যা ৭০। এদের মধ্যে ছাত্র ৫০জন এবং ছাত্রী ২০জন। এখানে ছাত্র ও ছাত্রীসংখ্যার অনুপাত = ৫০: ২০ বা ৫: ২। উভয়ক্ষেত্রে অনুপাত দুটি সমান।

অতএব, আমরা বলতে পারি, ২৫: ১০ = ৫০: ২০। এই অনুপাতে ৪টি রাশি আছে। এই ৪টি রাশির একটি সমানুপাত তৈরি করেছে।

এর মধ্যে ১ম রাশি ২৫, ২য় রাশি ১০, ৩য় রাশি ৫০ এবং ৪র্থ রাশি ২০ হিসেবে বিবেচনা করলে আমরা লিখতে পারি, |১ম রাশি : ২য় রাশি = ৩য় রাশি : ৪র্থ রাশি |

চারটি রাশির ১ম ও ২য় রাশির অনুপাত এবং ৩য় ও ৪র্থ রাশির অনুপাত পরস্পর সমান হলে, রাশি চারটি একটি সমানুপাত তৈরি করে। সমানুপাতের প্রত্যেক রাশিকে সমানুপাতী বলে। গণিত

সমানুপাতের ১ম ও ২য় রাশি সমজাতীয় এবং ৩য় ও ৪র্থ রাশি সমজাতীয় হবে। অর্থাৎ ৪ টি রাশি সমজাতীয় হওয়ার প্রয়োজন নেই। প্রত্যেক অনুপাতের রাশি দুইটি সমজাতীয় হলেই সমানুপাত তৈরি হয়।

সমানুপাতের ১ম ও ৪র্থ রাশিকে প্রান্তীয় রাশি এবং ২য় ও ৩য় রাশিকে মধ্য রাশি বলে। সমানুপাতে '=' চিহ্নের পরিবর্তে '::' চিহ্নও ব্যবহার করা হয়। অতএব আমরা লিখতে পারি, ২৫ : ১০ :: ৫০ : ২০ । আবার, ১ম রাশি : ২য় রাশি = ৩য় রাশি : ৪র্থ রাশি

মধ্য রাশি

ত্রৈরাশিক

আমরা জানি, λ ম রাশি \times ৪র্থ রাশি = ২য় রাশি \times ৩য় রাশি মনে করি, λ ম, ২য় ও ৩য় রাশি যথাক্রমে λ , λ ৮, ২০।

এভাবে সমানুপাতের তিনটি রাশি জানা থাকলে ৪র্থ রাশি নির্ণয় করা যায়। এই ৪র্থ রাশি নির্ণয় করার পদ্ধতিকে ত্রৈরাশিক বলে।

লক্ষ করি.

- সমানুপাতের ১ম ও ৪র্থ রাশিকে প্রান্তীয় রাশি বলে ।
- সমানুপাতের ২য় ও ৩য় রাশিকে মধ্য রাশি বলে ।

উদাহরণ ২। ৩, ৬,৭ এর ৪র্থ সমানুপাতী নির্ণয় কর।

সমাধান : এখানে ১ম রাশি ৩, ২য় রাশি ৬, ৩য় রাশি ৭ আমরা জানি, ১ম রাশি \times ৪র্থ রাশি = ২য় রাশি \times ৩য় রাশি

বা, ৪র্থ রাশি
$$=\frac{\sqrt[3]{9}\times 9}{\cancel{5}}$$
 বা, ১৪

নির্ণেয় ৪র্থ সমানুপাতিক ১৪

সমানুপাত ও লাভ-ক্ষতি

উদাহরণ ৩। ৮, ৭ এবং ১৪ এর ৩য় রাশি নির্ণয় কর।

সমাধান : এখানে ১ম রাশি ৮, ২য় রাশি ৭ এবং ৪র্থ রাশি ১৪ আমরা জানি. ১ম রাশি \times ৪র্থ রাশি = ২য় রাশি \times ৩য় রাশি

বা.
$$b \times 58 = 9 \times 0$$
য় রাশি

কাজ :

নিচের খালি ঘর পূরণ কর।

(ক) 🔃 : ৯ :: ১৬ : ৮

(খ) ৯:১৮::২৫:

ক্রমিক সমানুপাত

মনে করি, ৫ টাকা, ১০ টাকা ও ২০ টাকা এই তিনটি রাশি দ্বারা ৫: ১০ এবং ১০: ২০ এই দুটি অনুপাত নেওয়া হলো। এখানে, ৫: ১০:: ১০: ২০। এ ধরনের সমানুপাতকে ক্রমিক সমানুপাত বলে। ৫ টাকা, ১০ টাকা ও ২০ টাকাকে ক্রমিক সমানুপাতী বলে।

তিনটি রাশির ১ম ও ২য় রাশির অনুপাত এবং ২য় ও ৩য় রাশির অনুপাত পরস্পর সমান হলে, সমানুপাতটিকে ক্রমিক সমানুপাত বলে। রাশি তিনটিকে ক্রমিক সমানুপাতী বলে।

ক : খ :: খ : গ সমানুপাতটির তিনটি রাশি ক, খ, গ ক্রমিক সমানুপাতী হলে, $\frac{\sigma}{u} = \frac{u}{v}$ বা ক \times গ = $(u)^{2}$ হবে।

অর্থাৎ, ১ম ও ৩য় রাশির গুণফল দ্বিতীয় রাশির বর্গের সমান।

লক্ষ করি:
• ২য় রাশিকে ১ম ও ৩য় রাশির মধ্য সমানুপাতী বা মধ্য রাশি বলে।

ক্রমিক সমানুপাতের তিনটি রাশিই সমজাতীয়।

উদাহরণ 8। একটি ক্রমিক সমানুপাতের ১ম ও ৩য় রাশি যথাক্রমে ৪ ও ১৬ হলে, মধ্য সমানুপাতী ও ক্রমিক সমানুপাত নির্ণয় কর।

সমাধান : আমরা জানি, ১ম রাশি \times ৩য় রাশি = (২য় রাশি) 3

এখানে, ১ম রাশি = ৪ এবং ৩য় রাশি = ১৬

নির্ণেয় ক্রমিক সমানুপাত 8:৮::৮:১৬ এবং নির্ণেয় মধ্য সমানুপাতী ৮

২২

উদাহরণ ৫। ৫টি খাতার দাম ২০০ টাকা হলে, ৭টি খাতার দাম কত? সমাধান : এখানে খাতার সংখ্যা বাড়লে দামও বাড়বে। অর্থাৎ, খাতার সংখ্যার অনুপাত = খাতার দামের অনুপাত

৫: ৭ = ২০০ টাকা: ৭টি খাতার দাম

বা,
$$\frac{e}{q} = \frac{200 টাকা}{q \cdot b}$$
 খাতার দাম

বা, ৭টি খাতার দাম =
$$\frac{9 \times 200$$
টাকা $}{600}$ = ২৮০ টাকা।

উদাহরণ ৬। ১২জন লোক একটি কাজ ৯ দিনে করতে পারে। একই হারে কাজ করলে ১৮জনে কাজটি কত দিনে করতে পারবে?

সমাধান : লক্ষ করি, লোকসংখ্যা বাড়লে সময় কম লাগবে, আবার লোকসংখ্যা কমলে সময় বেশি লাগবে। লোকসংখ্যার সরল অনুপাত সময়ের ব্যস্ত অনুপাতের সমান হবে।

১২ : ১৮ = নির্ণেয় সময় : ৯ দিন

বা,
$$\frac{\cancel{\cancel{2}}}{\cancel{\cancel{2}}\cancel{\cancel{5}}} = \frac{\text{নির্ণেয় সময়}}{5 \text{ দিন}}$$

বা, নির্ণেয় সময়
$$=$$
 $\frac{2 \times 5^{\circ}}{\circ}$ দিন $=$ ৬ দিন

সমানুপাতিক ভাগ

মনে করি, ৫০০ টাকা ৩ : ২ অনুপাতে বণ্টন করতে হবে। এখানে ৩ : ২ অনুপাতের পূর্বরাশি ও উত্তর রাশির যোগফল = ৩+২ = ৫

$$\therefore$$
 ১ম ভাগ = ৫০০ টাকার $\frac{\mathfrak{G}}{\mathfrak{C}}$ অংশ = ৩০০ টাকা

এবং ২য় ভাগ = ৫০০ টাকার
$$\frac{2}{c}$$
 অংশ = ২০০ টাকা।

অতএব, একটি অংশের পরিমাণ = প্রদত্ত রাশি × ঐ অংশের আনুপাতিক সংখ্যা

অনুপাতের পূর্ব ও উত্তর রাশির যোগফল

এভাবে উপরের পদ্ধতিতে একটি রাশিকে বিভিন্ন ভাগে বিভক্ত করা যায়।

একটি প্রদত্ত রাশিকে একাধিক নির্দিষ্ট সংখ্যার অনুপাতে বিভক্ত করাকে **সমানুপাতিক ভাগ** বলে।

সমানুপাত ও লাভ-ক্ষতি ২৩

উদাহরণ ৭। ২০ মিটার কাপড়কে তিন ভাইবোন অমিত, সুমিত ও চৈতির মধ্যে ৫ : ৩ : ২ অনুপাতে ভাগ করলে প্রত্যেকের কাপড়ের পরিমাণ কত?

সমাধান: কাপডের পরিমাণ = ২০ মিটার

প্রদত্ত অনুপাত = ৫:৩:২

অনুপাতের সংখ্যাগুলোর যোগফল = ৫ + ৩ + ২ = ১০

∴ অমিতের অংশ = ২০ মিটারের
$$\frac{e}{20}$$
 অংশ = ১০ মিটার সুমিতের অংশ = ২০ মিটারের $\frac{e}{20}$ অংশ = ৬ মিটার এবং চৈতির অংশ = ২০ মিটারের $\frac{2}{20}$ অংশ = ৪ মিটার

অমিত, সুমিত ও চৈতির কাপড়ের পরিমাণ যথাক্রমে ১০ মিটার, ৬ মিটার ও ৪ মিটার।

কাজ

১। ক : খ = 8 : ৫, খ : গ = 9 : ৯ হলে, ক : খ : গ নির্ণয় কর।

২। ৪৮০০ টাকা আয়েশা, ফিরোজা ও খাদিজার মধ্যে ৪ : ৩ : ১ অনুপাতে ভাগ করে দিলে কে কত টাকা পাবে?

৩। তিনজন ছাত্রের মধ্যে ৫৭০ টাকা তাদের বয়সের অনুপাতে ভাগ করে দেওয়া হলো। তাদের বয়স যথাক্রমে ১০, ১৩ ও ১৫ বছর হলে, কে কত টাকা পাবে?

উদাহরণ ৮। পনির ও তপনের আয়ের অনুপাত ৪:৩। তপন ও রবিনের আয়ের অনুপাত ৫:৪। পনিরের আয় ১২০ টাকা হলে, রবিনের আয় কত?

সমাধান : পনির ও তপনের আয়ের অনুপাত
$$8: \mathfrak{o} = \frac{8}{\mathfrak{o}} = \frac{8 \times \ell}{\mathfrak{o} \times \ell} = \frac{20}{2\ell} = 20: 2\ell$$

তপন ও রবিনের আয়ের অনুপাত
$$\frac{\alpha}{8} = \frac{\alpha \times \circ}{8 \times \circ} = \frac{\flat \alpha}{\flat \flat} = \flat \alpha : \flat \flat$$

পনিরের আয় : তপনের আয় : রবিনের আয় = ২০ : ১৫ : ১২

∴ পনিরের আয় : রবিনের আয় = ২০ : ১২

বা,
$$\frac{\text{পনিরের আয়}}{\text{রবিনের আয়}} = \frac{20}{22}$$

বা, রবিনের আয় =
$$\frac{\gamma \ln (3 + 3)}{30}$$
 টাকা $\frac{3}{30}$ টাকা = $\frac{3 + 3}{30}$ টাকা বা ৭২ টাকা।

∴ রবিনের আয় ৭২ টাকা

অনুশীলনী ২.১

- নিচের রাশিগুলো দিয়ে সমানুপাত লেখ। 21
 - (ক) ৩ কেজি, ৫ টাকা, ৬ কেজি, ১০ টাকা
 - (খ) ৯ বছর, ১০ দিন, ১৮ বছর ও ২০ দিন
 - (গ) ৭ সে.মি., ১৫ সেকেন্ড, ২৮ সে.মি. ও ১ মিনিট
 - (ঘ) ১২টি খাতা, ১৫টি পেনসিল, ২০ টাকা ও ২৫ টাকা
 - (%) ১২৫ জন ছাত্র ও ২৫জন শিক্ষক, ২৫০০ টাকা ও ৫০০ টাকা
- নিচের ক্রমিক সমানুপাতের প্রান্তীয় রাশি দুটি দেওয়া আছে। সমানুপাত তৈরি কর।

- (ক) ৬, ২৪ (খ) ২৫, ৮১ (গ) ১৬, ৪৯ (ঘ) $\frac{e}{9}$, ১ $\frac{2}{e}$ (৩) ১-৫, ১৩-৫।
- ৩। শূন্যস্থান পূরণ কর।
 - (ক) ১১ : ২৫ :: : : : ৫০ (খ) ৭ : : : : ৮ : ৬৪ (গ) ২-৫ : ৫-০ :: ৭ : : :
- $(\underline{A}) \frac{2}{2} : \frac{6}{2} :: \square : \frac{70}{6} \qquad (\underline{R}) \square : 25 \cdot 6 :: 6 : 56$
- নিচের রাশিগুলোর ৪র্থ সমানুপাতী নির্ণয় কর।
 - (本) 化, 9, 50
- (খ) ১৫, ২৫, ৩৩ (গ) ১৬, ২৪, ৩২
- $(\forall) \ \forall, \ \forall \frac{3}{3}, \ 8$ $(\&) \ \&, \ 8 \cdot \&, \ 9$
- ১৫ কেজি চালের দাম ৬০০ টাকা হলে, এরূপ ২৫ কেজি চালের দাম কত? 01
- ৬। একটি গার্মেন্টস ফ্যাক্টরিতে দৈনিক ৫৫০টি শার্ট তৈরি হয়। ঐ ফ্যাক্টরিতে একই হারে ১ সপ্তাহে কতটি শার্ট তৈরি হয়?
- কবির সাহেবের তিন পুত্রের বয়স যথাক্রমে ৫ বছর, ৭ বছর ও ৯ বছর । তিনি ৪২০০ টাকা তিন পুত্রকে তাদের বয়স অনুপাতে ভাগ করে দিলেন, কে কত টাকা পাবে?
- ৮। ২১৬০ টাকা রুমি, জেসমিন ও কাকলির মধ্যে ১: ২: ৩ অনুপাতে ভাগ করে দিলে কে কত টাকা পাবে?
- ৯। কিছু টাকা লাবিব, সামি ও সিয়ামের মধ্যে ৫:8:২ অনুপাতে ভাগ করে দেওয়া হলো। সিয়াম ১৮০ টাকা পেলে লাবিব ও সামি কত টাকা পাবে নির্ণয় কর।

সমানুপাত ও লাভ-ক্ষতি

১০। সবুজ, ডালিম ও লিংকন তিন ভাই। তাদের পিতা ৬৩০০ টাকা তাদের মধ্যে ভাগ করে দিলেন। এতে সবুজ ডালিমের $\frac{\circ}{\alpha}$ অংশ এবং ডালিম লিংকনের দ্বিগুণ টাকা পায়। প্রত্যেকের টাকার পরিমাণ বের কর।

- ১১। তামা, দস্তা ও রুপা মিশিয়ে এক রকমের গহনা তৈরি করা হলো। ঐ গহনায় তামা ও দস্তার অনুপাত
 ১ : ২ এবং দস্তা ও রুপার অনুপাত ৩ : ৫ । ১৯ গ্রাম ওজনের গহনায় কত গ্রাম রুপা আছে?
- ১২। দুটি সমান মাপের গ্রাস শরবতে পূর্ণ আছে। ঐ শরবতে পানি ও সিরাপের অনুপাত যথাক্রমে প্রথম গ্রাসে ৩ : ২ ও দ্বিতীয় গ্লাসে ৫ : ৪। ঐ দুটি গ্লাসের শরবত একত্রে মিশ্রণ করলে পানি ও সিরাপের অনুপাত নির্ণয় কর।
- ১৩। ক : খ = ৪ : ৭, খ : গ = ১০ : ৭ হলে, ক : খ : গ নির্ণয় কর।
- ১৪। ৯৬০০ টাকা সারা, মাইমুনা ও রাইসার মধ্যে ৪: ৩: ১ অনুপাতে ভাগ করে দিলে কে কত টাকা পাবে ?
- ১৫। তিনজন ছাত্রের মধ্যে ৪২০০ টাকা তাদের শ্রেণি অনুপাতে ভাগ করে দেওয়া হলো। তারা যদি যথাক্রমে ৬ষ্ঠ, ৭ম ও ৮ম শ্রেণির শিক্ষার্থী হয়, তবে কে কত টাকা পাবে?
- ১৬। সোলায়মান ও সালমানের আয়ের অনুপাত ৫: ৭। সালমান ও ইউসুফের আয়ের অনুপাত 8: ৫। সোলায়মানের আয় ১২০ টাকা হলে ইউসুফের আয় কত?

২.৩ লাভ-ক্ষতি

একজন দোকানদার ১ ডজন বলপেন ৬০ টাকায় ক্রয় করে ৭২ টাকায় বিক্রয় করলেন। এখানে দোকানদার ১২টি বলপেন ৬০ টাকায় ক্রয় করলেন। ফলে ১টি বলপেনের ক্রয়মূল্য ৬০ টাকা বা ৫ টাকা। আবার তিনি

১২টি বলপেন ৭২ টাকায় বিক্রয় করলেন। ফলে ১টি বলপেনের বিক্রয়মূল্য $\frac{92}{52}$ টাকা বা ৬ টাকা। ১টি বলপেনের ক্রয়মূল্য ৫ টাকা ও বিক্রয়মূল্য ৬ টাকা।

কোনো জিনিস যে মূল্যে ক্রয় করা হয়, তাকে **ক্রয়মূল্য** এবং যে মূল্যে বিক্রয় করা হয়, তাকে **বিক্রয়মূল্য** বলে। ক্রয়মূল্যের চেয়ে বিক্রয়মূল্য বেশি হলে, **লাভ** হয়।

লাভ = বিক্রয়মূল্য — ক্রয়মূল্য =(৬ টাকা – ৫ টাকা) বা ১ টাকা। এখানে দোকানদার প্রতিটি বলপেনে ১ টাকা করে লাভ করলেন।

আবার মনে করি, একজন কলাবিক্রেতা ১ হালি কলা ২০ টাকায় ক্রয় করে ১৮ টাকায় বিক্রয় করলেন। ক্রয়মূল্যের চেয়ে বিক্রয়মূল্য কম হলে, **ক্ষতি** বা **লোকসান** হয়।

ক্ষতি = ক্রয়মূল্য – বিক্রয়মূল্য = (২০–১৮) টাকা = ২ টাকা

এখানে কলাবিক্রেতা প্রতি হালিতে ২ টাকা করে ক্ষতি করলেন। কর্মা নং-৪, গণিত-৭ম শ্রেণি ২৬ গণিত

মনে করি, একজন কাপড় ব্যবসায়ী মার্কেটের একটি দোকান ভাড়া নিয়ে ৫ জন কর্মচারী নিয়োগ দিলেন।
তিনি দোকানের ভাড়া, কর্মচারীদের বেতন, দোকানের বিদ্যুৎ বিল ও অন্যান্য আনুষঙ্গিক খরচ বহন করেন।
এ সকল খরচ তাঁর কাপড়ের ক্রয়মূল্যের সাথে যোগ করা হয়। এই যোগফলকেই মোট খরচ বলে। যদি
ঐ কাপড় ব্যবসায়ী মাসে ২,০০,০০০ টাকা ব্যবসায় খাটিয়ে ২,৫০,০০০ টাকায় ঐ কাপড় বিক্রয়
করেন, তবে তার (২,৫০,০০০ — ২,০০,০০০) টাকা বা ৫০,০০০ টাকা লাভ হবে। আবার যদি মাস
শেষে ১,৮০,০০০ টাকার কাপড় বিক্রয় করে থাকেন তাহলে তাঁর (২,০০,০০০ — ১,৮০,০০০) টাকা বা
২০,০০০ টাকা ক্ষতি বা লোকসান হবে।

- লক্ষ করি:
- লাভ = বিক্রয়মূল্য ক্রয়মূল্য

 বা, বিক্রয়মূল্য = ক্রয়মূল্য + লাভ

 বা, ক্রয়মূল্য = বিক্রয়মূল্য লাভ
- ক্ষতি = ক্রয়মূল্য বিক্রয়মূল্য

 বা, ক্রয়মূল্য = বিক্রয়মূল্য + ক্ষতি

 বা, বিক্রয়মূল্য = ক্রয়মূল্য ক্ষতি

লাভ বা ক্ষতিকে আমরা শতকরায় প্রকাশ করতে পারি। যেমন, উপরের আলোচনায় ৫ টাকায় বলপেন কিনে ৬ টাকায় বিক্রয় করায় ১ টাকা লাভ হয়।

অর্থাৎ ৫ টাকায় লাভ হয় ১ টাকা

∴ নির্ণেয় লাভ ২০%।

অনুরূপভাবে, কলাবিক্রেতা ২০ টাকার কলা কিনে ১৮ টাকায় বিক্রয় করায় ২ টাকা ক্ষতি হয়েছে। অর্থাৎ ২০ টাকায় ক্ষতি হয় ২ টাকা

∴ নির্ণেয় ক্ষতি ১০%

সমানুপাত ও লাভ-ক্ষতি 29

উদাহরণ ৯। একজন কমলাবিক্রেতা প্রতিশত কমলা ১০০০ টাকায় কিনে ১২০০ টাকায় বিক্রয় করলেন। তাঁর কত লাভ হলো?

সমাধান: ১০০টি কমলার ক্রয়মূল্য ১০০০ টাকা

এবং ১০০টি "বিক্রয়মূল্য ১২০০ "

এখানে ক্রয়মূল্যের চেয়ে বিক্রয়মূল্য বেশি হওয়ায় লাভ হয়েছে।

অর্থাৎ, লাভ = বিক্রয়মূল্য - ক্রয়মূল্য

= ১২০০ টাকা - ১০০০ টাকা

= ২০০ টাকা

নির্ণেয় লাভ ২০০ টাকা।

উদাহরণ ১০। একজন দোকানদার ৫০ কেজির ১ বস্তা চাল ১৬০০ টাকায় কিনলেন। চালের দাম কমে যাওয়ায় ১৫০০ টাকায় বিক্রয় করেন, তাঁর কত ক্ষতি হলো?

সমাধান: এখানে, ১ বস্তা চালের ক্রয়মূল্য ১৬০০ টাকা

∴ ক্রয়মূল্যের চেয়ে বিক্রয়মূল্য কম হওয়ায় ক্ষতি হয়েছে।

= ১৬০০ টাকা – ১৫০০ টাকা = ১০০ টাকা

নির্ণেয় ক্ষতি ১০০ টাকা।

উদাহরণ ১১। ৭৫ টাকায় ১৫টি বলপেন কিনে ৯০ টাকায় বিক্রয় করলে শতকরা কত লাভ হবে?

সমাধান: এখানে, ১৫টি বলপেনের ক্রয়মূল্য ৭৫ টাকা

এবং ১৫টি "বিক্রয়মূল্য ৯০ টাকা

ক্রয়মূল্যের চেয়ে বিক্রয়মূল্য বেশি হওয়ায় লাভ হয়েছে।

= ৯০ টাকা – ৭৫ টাকা = ১৫ টাকা

∴ ৭৫ টাকায় লাভ হয় ১৫ টাকা

অতএব লাভ ২০%।

হচ গণিত

উদাহরণ ১২। একজন মাছবিক্রেতা প্রতি হালি ইলিশ মাছ ১৬০০ টাকায় কিনে প্রতিটি মাছ ৩৫০ টাকা করে বিক্রয় করলেন। তাঁর শতকরা কত লাভ বা ক্ষতি হলো?

সমাধান: প্রতি হালি বা ৪টি ইলিশের দাম = ১৬০০ টাকা

আবার, ১টি ইলিশের বিক্রয়মূল্য ৩৫০ টাকা এখানে, ক্রয়মূল্যের চেয়ে বিক্রয়মূল্য কম হওয়ায় ক্ষতি হয়েছে।

.: ৪০০ টাকায় ক্ষতি হয় ৫০ টাকা

$$3$$
 " " $\frac{eo}{800}$ " $\frac{eo^{\frac{3}{2}}(e)}{800}$ " বা $\frac{3}{2}$ টাকা বা $32\frac{3}{2}$ টাকা

উদাহরণ ১৩। একবাক্স আঙ্গুর ২৭৫০ টাকায় বিক্রয় করায় ৪৫০ টাকা ক্ষতি হলো। ঐ আঙ্গুর ৩৬০০ টাকায় বিক্রয় করলে কত লাভ বা ক্ষতি হতো?

সমাধান: আঙ্গুরের বিক্রয়মূল্য = ২৭৫০ টাকা

∴ লাভ ৪০০ টাকা।

উদাহরণ ১৪। একজন চা ব্যবসায়ী একবাক্স চা পাতা কেজি প্রতি ৮০ টাকা হিসাবে ক্রয় করেন। সব চা পাতা কেজি প্রতি ৭৫ টাকা দরে বিক্রয় করায় ৫০০ টাকা ক্ষতি হয়। তিনি কত কেজি চা পাতা ক্রয় করেছিলেন?

সমানুপাত ও লাভ-ক্ষতি

সমাধান: কেজি প্রতি চা পাতার ক্রয়মূল্য ৮০ টাকা

" " বিক্রয়মূল্য ৭৫ টাকা

... ১ কেজি চা পাতা বিক্রয় করলে ক্ষতি হয় ৫ টাকা

= ১০০ কেঞ্জিতে

∴ চা পাতা ক্রয়় করেছিলেন ১০০ কেজি।

উদাহরণ ১৫। একজন ডিম বিক্রেতা প্রতি ডজন ডিম ১০১ টাকা দরে ৫ ডজন এবং ৯০ টাকা দরে ৬ ডজন ডিম কিনে কত দরে বিক্রয় করলে তাঁর ডজন প্রতি ৩ টাকা লাভ হবে?

সমাধান: ১ ডজন ডিমের ক্রয়মূল্য ১০১ টাকা

∴ ৫ " " ১০১×৫ টাকা বা ৫০৫ টাকা

আবার, ১ ডজন ডিমের ক্রয়মূল্য ৯০ টাকা

∴ ৬ " " » ৯০×৬ টাকা বা ৫৪০ টাকা

∴ (৫+৬) ডজন বা ১১ ডজন ডিমের ক্রয়মূল্য (৫০৫ + ৫৪০) টাকা বা ১০৪৫ টাকা

গড়ে ১ ডজন ডিমের ক্রয়মূল্য ৯৫ টকা

ডজন প্রতি ৩ টাকা লাভে ১ ডজন ডিমের বিক্রয়মূল্য (৯৫ + ৩) টাকা বা ৯৮ টাকা

∴ প্রতি ডজন ডিমের বিক্রয়মূল্য ৯৮ টাকা হলে ডজন প্রতি ৩ টাকা লাভ হবে।

উদাহরণ ১৬। একটি ছাগল ১০% ক্ষতিতে বিক্রয় করা হলো। বিক্রয়মূল্য ৪৫০ টাকা বেশি হলে ৫% লাভ হতো। ছাগলটির ক্রয়মূল্য কত?

সমাধান: মনে করি, ছাগলটির ক্রয়মূল্য ১০০ টাকা

১০% ক্ষতিতে বিক্রয়মূল্য (১০০ – ১০) টাকা বা, ৯০ টাকা ৫% লাভে বিক্রয়মূল্য (১০০ + ৫) টাকা = ১০৫ টাকা ৩০

ছাগলটির ক্রয়মূল্য ৩০০০ টাকা

উদাহরণ ১৭। নাবিল মিষ্টির দোকান থেকে প্রতি কেজি ২৫০ টাকা হিসাবে ২ কেজি সন্দেশ ক্রয় করল। ভ্যাটের হার ৪ টাকা হলে, সন্দেশ ক্রয় বাবদ সে দোকানিকে কত টাকা দেবে?

= ৩০০০ টাকা

সমাধান: ১ কেজি সন্দেশের দাম ২৫০ টাকা

১০০ টাকায় ভ্যাট ৪ টাকা

∴ ১ " "
$$\frac{8}{500}$$
"

∴ ৫০০ " " $\frac{8 \times 600}{500}$ " = ২০ টাকা

∴ নাবিল সন্দেশ ক্রয় বাবদ দোকানিকে দেবে (৫০০ + ২০) টাকা বা ৫২০ টাকা।

লক্ষণীয় : কোনো দ্রব্যের ক্রয়মূল্যের সাথে নির্দিষ্ট হারে প্রদানকৃত করকে মূল্য সংযোজন কর ভ্যাট (Value Added Tax) বলে।

- কাজ: ১। কণা শাড়ির দোকানে গিয়ে ১,২০০ টাকায় একটি সিল্কের শাড়ি ও ১,৮০০ টাকায় একটি খ্রিপিস ক্রয় করল। ভ্যাটের হার ৪ টাকা হলে, সে দোকানিকে কত টাকা দেবে?
 - ইশরাক মনিহারি দোকানে গিয়ে এক ডজন পেনসিল ক্রয় করে দোকানিকে ২৫০ টাকা দিল।
 ভ্যাটের হার ৪ টাকা হলে, প্রতিটি পেনসিলের দাম কত?

সমানুপাত ও লাভ-ক্ষতি

উদাহরণ ১৮। নাসির সাহেবের মাসিক মূলবেতন ২৭,৬৫০ টাকা। বার্ষিক মোট আয়ের প্রথম দুই লক্ষ্ণ পঞ্চাশ হাজার টাকার আয়কর ০ (শূন্য) টাকা। পরবর্তী টাকার উপর আয়করের হার ১০ টাকা হলে, নাসির সাহেব কত টাকা আয়কর দেন?

সমাধান: ১ মাসের মূল বেতন ২৭,৬৫০ টাকা

∴ করযোগ্য টাকার পরিমাণ (৩,৩১,৮০০ – ২,৫০,০০০) টাকা বা ৮১,৮০০ টাকা
১০০ টাকায় আয়কর ১০ টাকা

∴ নাসির সাহেব ৮,১৮০ টাকা আয়কর দেন।

উদাহরণ ১৯। যদি ১ ইউএস ডলার = ৮১.৫০ টাকা হয় এবং ৭০০০ ডলার বাংলাদেশি কত টাকার সমান হবে?

সমাধান: ১ ইউএস ডলার ৮১-৫০ টাকা

৭০০০ " " ৮১-৫০ × ৭০০০ টাকা
= ৫,৭০,৫০০-০০ টাকা
নির্ণেয় টাকার পরিমাণ = ৫,৭০,৫০০ টাকা।

অনুশীলনী ২.২

- ১। একজন দোকানদার প্রতি মিটার ২০০ টাকা দরে ৫ মিটার কাপড় কিনে প্রতি মিটার ২২৫ টাকা দরে বিক্রয় করলে কত লাভ হয়েছে?
- ২। একজন কমলাবিক্রেতা প্রতি হালি ৬০ টাকা দরে ৫ ডজন কমলা কিনে প্রতি হালি ৫০ টাকা দরে বিক্রয় করলে কত ক্ষতি হয়েছে?
- ৩। রবি প্রতি কেজি ৪০ টাকা দরে ৫০ কেজি চাউল কিনে ৪৪ টাকা কেজি দরে বিক্রয় করলে কত লাভ বা ক্ষতি হবে?
- ৪। প্রতি লিটার মিল্কভিটা দুধ ৫২ টাকায় কিনে ৫৫ টাকা দরে বিক্রয় করলে শতকরা কত লাভ হয়?

৩২

৫। প্রতিটি চকলেট ৮ টাকা হিসেবে ক্রয়় করে ৮.৫০ টাকা হিসেবে বিক্রয়় করে ২৫ টাকা লাভ হলো,
মোট কয়টি চকলেট ক্রয়় করা হয়েছিল?

- ৬। প্রতি মিটার ১২৫ টাকা দরে কাপড় ক্রয় করে ১৫০ টাকা দরে বিক্রয় করলে দোকানদারের ২০০০ টাকা লাভ হয়। দোকানদার মোট কত মিটার কাপড় ক্রয় করেছিলেন?
- ৭। একটি দ্রব্য ১৯০ টাকায় ক্রয় করে ১৭৫ টাকায় বিক্রয় করলে শতকরা কত লাভ বা ক্ষতি হবে?
- ৮। ২৫ মিটার কাপড় যে মূল্যে ক্রয় করে, সেই মূল্যে ২০ মিটার কাপড় বিক্রয় করলে শতকরা কত লাভ বা ক্ষতি হবে?
- ১। ৫ টাকায় ৮টি আমলকি ক্রয় করে ৫ টাকায় ৬টি দরে বিক্রয় করলে শতকরা কত লাভ বা ক্ষতি হবে?
- ১০। একটি গাড়ির বিক্রয়মূল্য গাড়িটির ক্রয়মূল্যের $\frac{8}{-}$ অংশের সমান। শতকরা লাভ বা ক্ষতি নির্ণয় কর।
- ১১। একটি দ্রব্য ৪০০ টাকায় বিক্রয় করলে যত ক্ষতি হয় ৪৮০ টাকায় বিক্রয় করলে, তার তিনগুণ লাভ হয়। দ্রব্যটির ক্রয়মূল্য নির্ণয় কর।
- ১২। একটি ঘড়ি ৬২৫ টাকায় বিক্রয় করলে ১০% ক্ষতি হয়। কত টাকায় বিক্রয় করলে ১০% লাভ হবে?
- ১৩। মাইশা প্রতি মিটার ২০ টাকা দরে ১৫ মিটার লাল ফিতা ক্রয় করল। ভ্যাটের হার ৪ টাকা। সে দোকানিকে ৫০০ টাকার একটি নোট দিল। দোকনি তাকে কত টাকা ফেরত দেবেন?
- ১৪। মি. রায় একজন সরকারি কর্মকর্তা। তিনি তীর্থস্থান পরিদর্শনের জন্য ভারতে যাবেন। যদি বাংলাদেশি ১ টাকা সমান ভারতীয় ০.৮৫ রুপি হয়, তবে ভারতীয় ৪২,৫০০ রুপির জন্য বাংলাদেশের কত টাকা প্রয়োজন হবে?
- ১৫। নীলিম সাহেব একজন চাকরিজীবী। তাঁর মাসিক মূলবেতন ২২,২৫০ টাকা। বার্ষিক মোট আয়ের প্রথম দুই লক্ষ পঞ্চাশ হাজার টাকার আয়কর ০ (শূন্য) টাকা। পরবর্তী টাকার উপর আয়করের হার ১০ টাকা হলে নীলিম কর বাবদ কত টাকা পরিশোধ করেন?

২.৪ গতি বিষয়ক সমস্যা

স্থির পানি ও স্রোতস্বিনী নদীতে নৌকার বেগ এক হবে না। স্রোতস্বিনী নদীতে স্রোতের অনুকূলে (একই দিকে) নৌকা চালালে নৌকার নিজস্ব বেগের সাথে স্রোতের বেগ যোগ করতে হবে। স্রোতের প্রতিকূলে (বিপরীত দিকে) নৌকার নিজস্ব বেগ থেকে স্রোতের বেগ বিয়োগ করতে হবে। স্রোতের অনুকূলে বা প্রতিকূলে নৌকা যে গতিতে চলে তা হলো নৌকার কার্যকরী গতিবেগ।

স্রোতের অনুকূলে নৌকার কার্যকরী গতিবেগ = নৌকার প্রকৃত গতিবেগ + স্রোতের গতিবেগ। স্রোতের প্রতিকূলে নৌকার কার্যকরী গতিবেগ = নৌকার প্রকৃত গতিবেগ – স্রোতের গতিবেগ।

<mark>উদাহরণ ২০।</mark> একটি নৌকা স্থির পানিতে ঘণ্টায় ৬ কি.মি. যেতে পারে। স্রোতের প্রতিকূলে ৬ কি.মি. যেতে নৌকাটির ৩ গুণ সময় লাগে। স্রোতের অনুকূলে ৫০ কি.মি. যেতে নৌকাটির কত সময় লাগবে? সমাধান: নৌকাটি স্থির পানিতে ৬ কি.মি. যায় ১ ঘণ্টায়

99

শ্রোতের প্রতিকৃলে ৬ কি.মি. যায় ১×৩ ঘণ্টায় বা ৩ ঘণ্টায় প্রশ্নমতে, ৩ ঘণ্টায় যায় ৬ কি.মি.

শ্রোতের প্রতিকূলে (বিপরীত দিকে) নৌকার কার্যকরী বেগ = নৌকার প্রকৃত বেগ – শ্রোতের বেগ

∴ শ্রোতের বেগ = নৌকার প্রকৃত বেগ – নৌকার কার্যকরী বেগ

স্রোতের অনুকূলে নৌকার (একই দিকে) কার্যকরী বেগ = নৌকার প্রকৃত গতিবেগ + শ্রোতের বেগ = (৬ + 8) কি.মি. বা ১০ কি.মি. প্রতি ঘণ্টায়

স্রোতের অনুকূলে ১০ কি.মি. যায় ১ ঘণ্টায়

শ্রোতের অনুকূলে যেতে ৫ ঘণ্টা লাগবে।

উদাহরণ ২১। একটি চৌবাচ্চায় তিনটি নল আছে। প্রথম ও দ্বিতীয় নল দ্বারা যথাক্রমে ৩০ মিনিট ও ২০ মিনিটে চৌবাচ্চাটি পূর্ণ হয়। তৃতীয় নল দ্বারা পূর্ণ চৌবাচ্চাটি ৬০ মিনিটে খালি হয়।

- (ক) তৃতীয় নল দারা ১ মিনিটে চৌবাচ্চাটির কত অংশ খালি হয়?
- (খ) তিনটি নল একসঙ্গে খুলে দিলে চৌবাচ্চাটি কত মিনিটে পূর্ণ হবে?
- (গ) প্রথম নল কখন বন্ধ করলে ১ম ও ২য় নল দ্বারা চৌবাচ্চাটি ১৮ মিনিটে পানি পূর্ণ হবে?

সমাধান: (ক) তৃতীয় নল দ্বারা ৬০ মিনিটে খালি হয় ১টি চৌবাচ্চা

(খ) ১ম নল দ্বারা ৩০ মিনিটে পূর্ণ হয় ১ অংশ

ফর্মা নং-৫, গণিত-৭ম শ্রেণি

৩৪

এবং ৩য় নল দ্বারা ৬০ মিনিটি খালি হয় ১ অংশ ৩য় ,, ,, ১ ,, ,,
$$\frac{\lambda}{50}$$
 তিনটি নল একসঙ্গে খুলে দিলে ১মিনিটে পূর্ণ হয় $(\frac{\lambda}{50} + \frac{\lambda}{50} - \frac{\lambda}{50})$ অংশ
$$= \frac{2+9-\lambda}{50}$$
 অংশ $= \frac{8}{50}$ অংশ
$$= \frac{\lambda}{50}$$
 অংশ পূর্ণ হয় ১ মিনিটে রাং ১ ,, ,, ,, $\lambda \times \frac{\lambda c}{50}$,,

সুতরাং ১ ,, ,, ,, ১ $\times \frac{3\alpha}{5}$,, = ১৫ মি.

গ. হয় নল দ্বারা ২০ মিনিট পূর্ণ হয় ১ অংশ হয় ,, ,, ১ ,, ,,
$$\frac{\lambda}{\lambda_0}$$
 অংশ হয় ,, ,, ১৮ ,, ,, $\frac{\lambda \times \lambda_D}{\lambda_0}$ অংশ = $\frac{\lambda}{\lambda_0}$ অংশ ।
$$=\frac{\lambda}{\lambda_0}$$
 অংশ ।

$$\frac{\lambda}{\delta o}$$
 অংশ পূর্ণ হতে সময় লাগে λ মিনিট λ ,, ,, ,, ,, $\frac{\lambda \times \delta o}{\lambda}$ মিনিট $\frac{\lambda}{\delta o}$,, ,, ,, ,, $\frac{\lambda \times \delta o}{\lambda \times \delta o}$ মিনিট $\frac{\lambda}{\delta o}$, ,, ,, ,, ,, $\frac{\lambda \times \delta o}{\lambda \times \delta o}$ মিনিট $\frac{\lambda}{\delta o}$ মিনিট

সুতরাং প্রথম নলটি ৩ মিনিট পর বন্ধ করলে ১ম ও ২য় নল দ্বারা চৌবাচ্চাটি ১৮ মিনিটে পানি পূর্ণ হবে।

সমানুপাত ও লাভ-ক্ষতি

উদাহরণ ২২। ৬০ মিটার দীর্ঘ একটি ট্রেনের গতিবেগ ঘণ্টায় ৪৮ কি.মি.। রেললাইনের পাশের একটি খুঁটিকে অতিক্রম করতে ট্রেনটির কত সময় লাগবে?

সমাধান: খুঁটিটি অতিক্রম করতে ট্রেনটিকে নিজের দৈর্ঘ্যের সমান দূরত্ব অতিক্রম করতে হবে। ৪৮ কি.মি. = ৪৮ × ১০০০ মিটার বা ৪৮০০০ মিটার ট্রেনটি ৪৮০০০ মি. অতিক্রম করে ১ ঘণ্টায়

" ১ " "
$$\frac{5}{8b000}$$
 ঘণ্টায় বা $\frac{5\times 60\times 60}{8b000}$ সেকেন্ডে " ৬০ " " $\frac{5\times 60\times 60^9\times 60^9}{8b000}$ সেকেন্ডে $=\frac{5}{2}$ সেকেন্ড $=\frac{5}{2}$ সেকেন্ড ট্রেনিটি $=\frac{5}{2}$ সেকেন্ড

					অনু	<u>र्</u> भीननी	২.৩			
21	৪:৯ এর দ্বিভাজিত অনুপাত কোনটি?									
	(季)	2:0		(খ)	8:8					
	(গ)	৯:৪		(ঘ)	20:0	2				
२।		৭ এবং খঃ ৪৯:৭০			খ:ক এ ৪৯:৪		ত?			
	(গ)	80:90	:85	(ঘ)	80:8	৯:৭০				
01	8:৩ ও	৫:৬ এর ধ	ারাবাহি	ক অনুপাত	তর দ্বিতী	য় রাশির ফ	মান কত?			
	(季)	20	(খ)	22						
	(গ)	১৬	(ঘ)	20						
	নিচের ত	থ্যের ভিত্তি	তৈ ৪-৫	নং প্রশ্নের	র উত্তর দ	াও।				
	৩০ মিটা	র কাপড় ম	াইশা, ফ	যারিয়া ও য	তানিয়ার	মধ্যে ৫:৩	:২ অনুপা	তে ভাগ ক	রে দেওয়া ই	হল
8	মাইশা ব	কত মিটার [্]	কাপড় (পেল?						
	(季)	26	(뉙)	8	(গ)	৬	(ঘ)	œ		
Œ 1	তানিয়া	থেকে মারি	য়া কত	মিটার কাণ	পড় বেশি	পেল?				
	(a)	9	(뉙)	¢	(গ)	৬	(ঘ)	8		
91	৫:৩ এ	বং ২:৫ এ	র ধারাব	াহিক অনু	পাত কো	নটি?				
	(季)	30:5:56	(학)	0:0:5	(গ)	4:4:4	(可) 20	2:6:30		

91	19010	এর	চত্ৰহা	সমানুপাতি	কোনটিং
7 1	0.0.30	94.24	000	14121110	CALLIO ?

- (ক) ২০ (খ) ২৫ (গ) ৩০ (ঘ) ৩৫
- ৮। একজন দোকানদার একটি দিয়াশলাই বাক্স ১.৫০ টাকায় ক্রয় করে ২.০০ টাকায় বিক্রয় করলে তাঁর শতকরা কত লাভ হবে?
 - (ক) ২০%

(학) ১৫%

(গ) ২৫%

(ঘ) ৩৩ <mark>১</mark>%

- ৯। একজন কলাবিক্রেতা প্রতি হালি কলা ২৫ টাকা দরে ক্রয় করে প্রতি হালি ২৭ টাকা দরে বিক্রয় করলে, তাঁর ৫০ টাকা লাভ হয়। সে কত হালি কলা ক্রয় করেছিল?
 - (ক) ২৫ হালি

(খ) ২০ হালি

(গ) ৫০ হালি

(ঘ) ২৭ হালি

নিচের রাশিগুলো দাগ টেনে মিল কর।

(ক) ক্রয়মূল্য বিক্রয়মূল্যের চেয়ে বেশি হলে	(ক) কম লাগে
(খ) ক্রয়মূল্য বিক্রয়মূল্যের চেয়ে কম হলে	(খ) লাভ হয়
(গ) শ্রোতের অনুকূলে সময়	(গ) বেশি লাগে
(ঘ) শ্রোতের প্রতিকূলে সময়	(ঘ) ক্ষতি হয়

- ১১। ৫ জন শ্রমিক ৬ দিনে ৮ বিঘা জমির ফসল উঠাতে পারে। ২০ বিঘা জমির ফসল উঠাতে ২৫ জন শ্রমিকের কত দিন লাগবে?
- ১২। স্বপন একটি কাজ ২৪ দিনে করতে পারে। রতন উক্ত কাজ ১৬ দিনে করতে পারে। স্বপন ও রতন একত্রে কাজটি কত দিনে শেষ করতে পারবে?
- ১৩। হাবিবা ও হালিমা একটি কাজ একত্রে ২০ দিনে করতে পারে। হাবিবা ও হালিমা একত্রে ৮ দিন কাজ করার পর হাবিবা চলে গেল। হালিমা বাকি কাজ ২১ দিনে শেষ করল। সম্পূর্ণ কাজটি হালিমা কত দিনে করতে পারত?
- ১৪। ৩০জন শ্রমিক ২০ দিনে একটি বাড়ি তৈরি করতে পারে। কাজ শুরুর ১০ দিন পরে খারাপ আবহাওয়ার জন্য ৬ দিন কাজ বন্ধ রাখতে হয়েছে। নির্ধারিত সময়ে কাজটি শেষ করতে অতিরিক্ত কতজন শ্রমিক লাগবে?
- ১৫। একটি কাজ ক ও খ একত্রে ১৬ দিনে, খ ও গ একত্রে ১২ দিনে এবং ক ও গ একত্রে ২০ দিনে করতে পারে। ক. খ ও গ একত্রে কাজটি কত দিনে করতে পারবে?
- ১৬। একটি চৌবাচ্চায় দুটি নল আছে। প্রথম ও দ্বিতীয় নল দ্বারা যথাক্রমে ১২ ঘণ্টা ও ১৮ ঘণ্টায় খালি চৌবাচ্চাটি পূর্ণ হয়। দুটি নল এক সাথে খুলে দিলে খালি চৌবাচ্চাটি কত ঘণ্টায় পূর্ণ হবে?
- ১৭। শ্রোতের অনুকূলে একটি নৌকা ৪ ঘণ্টায় ৩৬ কি.মি. পথ অতিক্রম করে। শ্রোতের বেগ প্রতিঘণ্টায় ৩ কি.মি. হলে, স্থির পানিতে নৌকার বেগ কত?

সমানুপাত ও লাভ-ক্ষতি

১৮। স্রোতের প্রতিকৃলে একটি জাহাজ ১১ ঘণ্টায় ৭৭ কি.মি. পথ অতিক্রম করে। স্থির পানিতে জাহাজের গতিবেগ প্রতি ঘণ্টায় ৯ কি.মি. হলে, স্রোতের গতিবেগ প্রতি ঘণ্টায় কত?

- ১৯। দাঁড় বেয়ে একটি নৌকা শ্রোতের অনুকূলে ১৫ মিনিটে ৩ কি.মি. এবং শ্রোতের প্রতিকূলে ১৫ মিনিটে ১ কি.মি. পথ অতিক্রম করে। স্থির পানিতে নৌকার গতিবেগ ও শ্রোতের পানিতে নৌকার গতিবেগ নির্ণয় কর।
- ২০। একজন কৃষক ৫ জোড়া গরু দ্বারা ৮ দিনে ৪০ হেক্টর জমি চাষ করতে পারেন। তিনি ৭ জোড়া গরু
 দ্বারা ১২ দিনে কত হেক্টর জমি চাষ করতে পারবেন?
- ২১। লিলি একা একটি কাজ ১০ ঘণ্টায় করতে পারেন। মিলি একা ঐ কাজটি ৮ ঘণ্টায় করতে পারেন।
 লিলি ও মিলি একত্রে ঐ কাজটি কত ঘণ্টায় করতে পারবেন?
- ২২। দুটি নল দ্বারা একটি খালি চৌবাচ্চা যথাক্রমে ২০ মিনিটে ও ৩০ মিনিটে পানি-পূর্ণ করা যায়।
 চৌবাচ্চাটি খালি থাকা অবস্থায় দুটি নল এক সাথে খুলে দেওয়া হলো। প্রথম নলটি কখন বন্ধ
 করলে চৌবাচ্চাটি ১৮ মিনিটে পানি-পূর্ণ হবে?
- ২৩। ১০০ মিটার দীর্ঘ একটি ট্রেনের গতিবেগ ঘণ্টায় ৪৮ কিলোমিটার। ঐ ট্রেনটি ৩০ সেকেন্ডে একটি সেতু অতিক্রম করে। সেতুটির দৈর্ঘ্য কত?
- ২৪। ১২০ মিটার দীর্ঘ একটি ট্রেন ৩৩০ মিটার দীর্ঘ একটি সেতু অতিক্রম করবে। ট্রেনটির গতিবেগ ঘণ্টায় ৩০ কি.মি. হলে, সেতুটি অতিক্রম করতে ট্রেনটির কত সময় লাগবে?
- ২৫। তামা, দস্তা ও রুপা মিশিয়ে একটি গহনা তৈরি করা হলো। ঐ গহনায় তামা ও দস্তার অনুপাত ১:২ এবং দস্তা: রুপার অনুপাত ৩:৫। গহনার ওজন ১৯০ গ্রাম।
 - (ক) তামা, দস্তা ও রূপার অনুপাত নির্ণয় কর।
 - (খ) গহনায় তামা, দস্তা ও রুপার ওজন পৃথকভাবে নির্ণয় কর।
 - (গ) ঐ গহনায় কি পরিমাণ দস্তা মিশালে তামা ও দস্তার অনুপাত ১:৩ হবে।
- ২৬। রাসেল একজন ঘড়ি ব্যবসায়ী। তিনি একটি ঘড়ি ৬২৫ টাকায় বিক্রয় করায় ১০% ক্ষতি হলো।
 - (ক) ঘড়িটি বিক্রিতে কত টাকা ক্ষতি হলো।
 - (খ) ঘড়িটির ক্রয়মূল্য কত?
 - (গ) ঘড়িটি কত টাকায় বিক্রয় করলে ১০% লাভ হবে।

তৃতীয় অধ্যায়

পরিমাপ


বাস্তব জীবনে আমরা প্রতিনিয়ত বিভিন্ন ধরনের বস্তু ব্যবহার করি। সেই সব বস্তুর পরিমাণ নির্ণয় করাই হচ্ছে পরিমাপ। সাধারণত আমরা কঠিন বন্তুর ক্ষেত্রে দৈর্ঘ্য, ওজন, ক্ষেত্রফল ও আয়তন প্রভৃতি পরিমাপ করা হয়। কিন্তু তরল পদার্থের নির্দিষ্ট কোনো আকার নেই বিধায় একে কোনো পাত্রে রেখে পাত্রের আয়তন নির্ণয়ের মাধ্যমে তরলের পরিমাণ নির্ণয় করা হয়। এই অধ্যায়ে আমরা দৈর্ঘ্য, ক্ষেত্রফল, ওজন ও তরলের আয়তন পরিমাপের বিষয়ে বিস্তারিত আলোচনা করব।

অধ্যায় শেষে শিক্ষার্থীরা-

- দৈর্ঘ্য পরিমাপের আন্তঃসম্পর্ক ব্যাখ্যা এবং এ সংক্রান্ত সমস্যা সমাধান করতে পারবে।
- ওজন ও তরল পদার্থের আয়তন পরিমাপ কীভাবে করা হয় তা ব্যাখ্যা করতে পারবে এবং এ সম্পর্কিত সমস্যা সমাধান করতে পারবে।
- ক্ষেল ব্যবহার করে আয়তাকার ও বর্গাকার ক্ষেত্রের দৈর্ঘ্য ও প্রস্থ পরিমাপ করে ক্ষেত্রফল নির্ণয় করতে পারবে।
- ওজন পরিমাপের বিভিন্ন পরিমাপক ব্যবহার করে দ্রব্যাদির ওজন পরিমাপ করতে পারবে।
- তরল পদার্থের আয়তন পরিমাপের বিভিন্ন পরিমাপক ব্যবহার করে যেকোনো তরল পদার্থের পরিমাপ করতে পারবে।
- দৈনন্দিন জীবনে আনুমানিক পরিমাপ করতে পারবে।

৩-১ দৈর্ঘ্য পরিমাপ

আমরা বাজারে গিয়ে কাপড়, বৈদ্যুতিক তার, রশি ইত্যাদি কিনে থাকি। একটা নির্দিষ্ট মাপের দৈর্ঘ্যের সাথে তুলনা করে এগুলো ক্রয়-বিক্রয় হয়। আবার বাড়ি হতে স্কুল, বাজার বা স্টেশন কত দূর তা-ও আমাদের জানার প্রয়োজন হয়। এই দূরতুও আমরা ঐ নির্দিষ্ট মাপের দৈর্ঘ্যের সাথে তুলনা করে বের করি। এই দৈর্ঘ্যকে পরিমাপের একক বলা হয়। দৈর্ঘ্য পরিমাপের জন্য ২টি পদ্ধতি প্রচলিত। (১) ব্রিটিশ পদ্ধতি ও (২) মেট্রিক পদ্ধতি

ব্রিটিশ পদ্ধতিতে দৈর্ঘ্য পরিমাপের একক হিসেবে গজ, ফুট, ইঞ্চি চালু আছে। তা বর্তমানে পৃথিবীতে অধিকাংশ দেশে দৈর্ঘ্য পরিমাপে ব্যবহৃত হচ্ছে মেট্রিক পদ্ধতি। মেট্রিক পদ্ধতিতে দৈর্ঘ্য পরিমাপের একক হিসেবে মিটার, সেন্টিমিটার, কিলোমিটারে চালু রয়েছে। পৃথিবীর উত্তর মেরু থেকে ফ্রান্সের রাজধানী প্যারিসের 🥳 পরিমাপ

দ্রাঘিমা বরাবর বিষুবরেখা পর্যন্ত দৈর্ঘ্যের কোটিভাগের একভাগকে ১ মিটার হিসেবে গণ্য করা হয়। মেট্রিক পদ্ধতিতে দৈর্ঘ্য পরিমাপের একক হচ্ছে মিটার।

১ মিটার = উত্তর মেরু থেকে বিষুবরেখা পর্যন্ত মোট দূরত্তের ১ কোটি ভাগের ১ ভাগ

প্লাটিনাম ও ইরিডিয়াম ধাতুর সংমিশ্রণে তৈরি মিটারের আসল নমুনাটি দৈর্ঘ্য পরিমাপের এককটি পৃথিবীর সব দেশের জন্য আদর্শ বা স্ট্যান্ডার্ডর্পে গণ্য করা হয়। এটি ফ্রান্সের জাদুঘরে সংরক্ষিত রয়েছে। বিভিন্ন দেশের প্রয়োজনে আদর্শ নমুনা থেকে স্থানীয় নমুনা তৈরি করে নেওয়া হয়।

লক্ষ করি, ১৯৮২ সাল থেকে বাংলাদেশের সর্বত্র দৈর্ঘ্য মাপার জন্য, ওজন নির্ণয়ের জন্য এবং তরল পদার্থের আয়তন পরিমাপের জন্য 'আন্তর্জাতিক আদর্শমান' বা 'সিস্টেম অব ইন্টারন্যাশনাল ইউনিট'(SI) গ্রহণ করা হয়েছে। দৈর্ঘ্য পরিমাপের এককাবলি

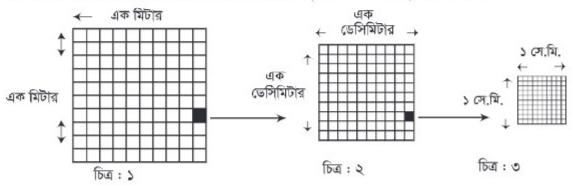
	মে	ট্ৰক পদ্ধতি	ব্রি	টিশ পছ	নতি
১০ মিলিমিটার (মি.মি.)	=	১ সেন্টিমিটার (সে. মি.)	১২ ইঞ্চি	=	১ ফুট
১০ সেন্টিমিটার	=	১ ডেসিমিটার (ডেসি. মি.)	৩ ফুট	=	১ গজ
১০ ডেসিমিটার	=	১ মিটার (মি.)	১৭৬০ গজ	=	১ মাইল
১০ মিটার	=	১ ডেকামিটার (ডেকা. মি.)	2490 191	10 To 10	ર નારન
১০ ডেকামিটার	=	১ হেক্টোমিটার (হে. মি.)			
১০ হেক্টোমিটার	=	১ কিলোমিটার (কি. মি.)			

মেট্রিক ও ব্রিটিশ পরিমাপের সম্পর্ক

১ ইঞ্চি	=	২.৫৪ সে. মি. (প্রায়)	\neg
১ মাইল	=	১.৬১ কি. মি. (প্রায়)	
১ মিটার	=	৩৯-৩৭ ইঞ্চি (প্রায়)	
১ কি. মি.	=	০.৬২ মাইল (প্রায়)	

- কাজ: ১। দৈনন্দিন জীবনে ব্যবহৃত হয় বা কাজে লাগে এমন কিছু বস্তুর নাম কর, যাদের দৈর্ঘ্য পরিমাপ করতে হয়।
 - ংকল দিয়ে তোমার একটি বইয়ের ও টেবিলের দৈর্ঘ্য ও প্রস্থ ইঞ্চিতে এবং সেন্টিমিটারে মাপ। এ হতে
 ইঞ্চি সমান কত সেন্টিমিটার তা নির্ণয় কর।
 - ৩। মাপার ফিতা দিয়ে শ্রেণিকক্ষের দৈর্ঘ্য ও প্রস্থ পরিমাপ কর।

৩-২ ক্ষেত্রফল পরিমাপ


ক্ষেত্রফল পরিমাপের ধারণা আমাদের জীবনে খুবই গুরুত্বপূর্ণ। বসবাসের জন্য ঘর-বাড়ি হতে গুরু করে শিক্ষা প্রতিষ্ঠান, হাসপাতাল, সরকারি বিভিন্ন ভবন ইত্যাদি আমাদের খুবই প্রয়োজনীয় স্থাপনা। এগুলো যে জমির উপর তৈরি করতে হয় তার ক্ষেত্রফল জানা আমাদের একান্ত প্রয়োজন।

কোনো নির্দিষ্ট সীমারেখা দ্বারা আবদ্ধ স্থান হলো ক্ষেত্র এবং এই ক্ষেত্রের পরিমাপকে তার **ক্ষেত্রফল** বা **কালি** বলে।

যেকোনো ক্ষেত্রের সাধারণত দৈর্ঘ্য ও প্রস্থ থাকে। এ জন্য ক্ষেত্রফলের একক হিসেবে এক একক দৈর্ঘ্যের বাহুবিশিষ্ট একটি বর্গক্ষেত্রের ক্ষেত্রফলকে ধরা হয়।ক্ষেত্রফলের একককে বর্গ একক লেখা হয়। যে বর্গক্ষেত্রের বাহুর দৈর্ঘ্য ১ মিটার, তার ক্ষেত্রফল ১ বর্গমিটার। অনুরূপ ১ বর্গফুট, ১ বর্গসেন্টিমিটার, ইত্যাদিও ক্ষেত্রফলের একক হিসেবে ব্যবহৃত হয়।

১ একক ১ একক

কোনো ক্ষেত্রের ক্ষেত্রফল নির্ণয় করতে হলে, এর মধ্যে কতগুলো বর্গএকক আছে তা বের করতে হয়। মনে করি, নিচের বর্গক্ষেত্রের প্রতিবাহুর দৈর্ঘ্য ১ মিটার। অতএব, এর ক্ষেত্রফল ১ বর্গমিটার। বর্গক্ষেত্রটির প্রত্যেক বাহুকে সমান ১০ অংশে বিভক্ত করে বিপরীত বিন্দুগুলো পরস্পর সংযুক্ত করা হলো।

চিত্র : ১ এ প্রতিটি ক্ষুদ্র বর্গক্ষেত্রের বাহুর দৈর্ঘ্য ১ ডেসিমিটার। চিত্র : ২ থেকে দেখা যাচ্ছে যে চিত্র ১এর ১টি ক্ষুদ্র বর্গক্ষেত্রে ১০০টি অতি ক্ষুদ্র বর্গক্ষেত্র রয়েছে।

১ ডেসিমিটার × ১ ডেসিমিটার = ১ বর্গডেসিমিটার।

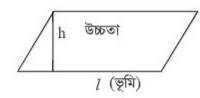
অতএব. ১ বর্গমিটার = ১০০ বর্গডেসিমিটার।

তদ্রুপ, ১ ডেসিমিটার দৈর্ঘ্যের বাহুবিশিষ্ট বর্গক্ষেত্র নিয়ে এর প্রত্যেক বাহুকে ১০টি সমান অংশে ভাগ করে আগের মতো সংযুক্ত করে দেখানো যায় যে, ১ বর্গডেসিমিটার = (১০×১০) বর্গসে.মি. বা ১০০ বর্গসেন্টিমিটার।

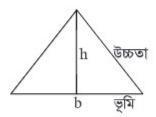
১ বর্গমিটার =১০০ × ১০০ বর্গসেন্টিমিটার = ১০,০০০ বর্গসেন্টিমিটার। অতএব.

লক্ষ করি. ৪ মিটার বর্গ এবং ৪ বর্গমিটার এক কথা নয়। ৪ মিটার বর্গ দ্বারা এমন একটি বর্গক্ষেত্রকে বোঝায় যার প্রত্যেক বাহুর দৈর্ঘ্য ৪ মিটার এবং যার ক্ষেত্রফল (৪ × ৪) বর্গমিটার বা ১৬ বর্গমিটার। কিন্তু ৪ 😓 বর্গমিটার দ্বারা এমন একটি বর্গক্ষেত্রের ক্ষেত্রফল বোঝায় যার দৈর্ঘ্য ও প্রস্ত মিটারের এককে মেপে গুণ করলে ৪ হয়। 🖇 পরিমাপ

83


নিচে কয়েকটি ক্ষেত্রের ক্ষেত্রফলের সূত্র দেওয়া হলো:

আয়ত


আয়তাকারক্ষেত্রের ক্ষেত্রফল = দৈর্ঘ্য × প্রস্থ = $l \times b$

সামান্তরিক

সামান্তরিকক্ষেত্রের ক্ষেত্রফল = ভূমি × উচ্চতা = l imes h

ত্রিভূজ

ত্রিভুজক্ষেত্রের ক্ষেত্রফল = $\frac{3}{2} \times ভূমি \times$ উচ্চতা = $\frac{3}{2} \times (b \times h)$

ক্ষেত্রফল পরিমাপে মেট্রিক ও ব্রিটিশ পদ্ধতির সম্পর্ক

ব্রিটিশ পদ্ধতিতে

১ বর্গইঞ্চি 😑 ৬.৪৫ বর্গসেন্টিমিটার (প্রায়)

১ বর্গফুট = ৯২৯ বর্গসেন্টিমিটার (প্রায়)

১ বর্গগজ = ০.৮৪ বর্গমিটার (প্রায়)

স্থানীয় পদ্ধতিতে

১ বর্গসেন্টিমিটার = ০.১৫৫ বর্গইঞ্চি (প্রায়)

১ বর্গমিটার = ১০.৭৬ বর্গফুট (প্রায়)

১ হেক্টর = ২.৪৭ একর (প্রায়)

কাজ:

- 🕽 । স্কেল দিয়ে তোমার একটি বইয়ের ও পড়ার টেবিলের দৈর্ঘ্য ও প্রস্থ সেন্টিমিটারে মেপে এর ক্ষেত্রফল নির্ণয় কর।
- ২। দলগতভাবে তোমরা বেঞ্চ, টেবিল, দরজা, জানালা ইত্যাদির দৈর্ঘ্য ও প্রস্থ স্কেলের সাহায্যে মেপে ক্ষেত্রফল বের কর।

৩.৩ ওজন পরিমাপ

প্রত্যেক বস্তুর ওজন আছে। বিভিন্ন দেশে বিভিন্ন এককের সাহায্যে বস্তু ওজন করা হয়। মেট্রিক পদ্ধতিতে ওজন পরিমাপের একটি একক গ্রাম।

৪° সেলসিয়াস তাপমাত্রায় ১ ঘন সে. মি. বিশুদ্ধ পানির ওজন ১ গ্রাম।

মেট্রিক পদ্ধতিতে ওজন পরিমাপের জন্য ব্যবহৃত আরও দুটি একক আছে। অধিক পরিমাণ বস্তুর ওজনের জন্য এ দুটি একক ব্যবহার করা হয়। একক দুটি হচ্ছে কুইন্টাল ও মেট্রিক টন।

ফর্মা নং-৬, গণিত-৭ম শ্রেণি

ওজন পরিমাপের মেট্রিক এককাবলি

১০ মিলিগ্রাম (মি. গ্রা.)	=	১ সেন্টিগ্রাম (সে. গ্রা.)
১০ সেন্টিগ্রাম	=	১ ডেসিগ্রাম (ডেসিগ্রা.)
১০ ডেসিগ্রাম	=	১ গ্রাম (গ্রা.)
১০ গ্রাম	=	১ ডেকাগ্রাম (ডেকাগ্রা.)
১০ ডেকাগ্রাম	=	১ হেক্টোগ্রাম (হে. গ্রা.)
১০ হেক্টোগ্রাম	=	১ কিলোগ্রাম (কে. জি.)
১ কিলোগ্রাম বা ১ কে.জি.	=	১০০০ গ্রাম
১০০ কিলোগ্রাম (কে. জি.)	=	১ কুইন্টাল
১০০০ কিলোগ্রাম বা ১০ কুইন্টাল	=	১ মেট্রিক টন

শহরে ও গ্রামে ওজন পরিমাপের জন্য দাঁড়িপাল্লা ও বাটখারা ব্যবহার করা হয়। এ বাটখারা ৫ গ্রাম, ১০ গ্রাম, ৫০ গ্রাম, ১০০ গ্রাম, ২০০ গ্রাম, ৫০০ গ্রাম, ১ কে. জি., ২ কে. জি., ৫ কে. জি., ১০ কে. জি. ইত্যাদি ওজনের হয়।

অনেক ক্ষেত্রে শহরে দাগকাটা ব্যালেপ দ্বারা ওজন পরিমাপ করা হয়। এটি দেখতে অনেকটাই একটি কর্তিত পিরামিডের নিচের অংশের মতো যার উপরে দ্রব্য রাখা যায় এবং যার গায়ে একপাশে দেয়ালঘড়ির ডায়ালের দাগের মতো গোলাকার রেখায় দাগ কাটা থাকে। ওজনের সমহারে কিলোগ্রামের মাপে দাগের পাশে সংখ্যা বসানো থাকে এবং ঘড়ির মিনিটের কাঁটার মতো একটা নির্দেশক কাঁটা থাকে। মাপার জন্য ব্যালেসের উপর কোনো দ্রব্য বসালেই কাঁটাটি যে সংখ্যাকে নির্দেশ করে সে সংখ্যাই ঐ বস্তুর ওজন। এতে প্রতি কে. জি.কে ১০ ভাগে ভাগ করে দাগ কাটা আছে।

বর্তমানে দাগকাটা ব্যালেন্স এর স্থলে ডিজিটাল ব্যালেন্স ব্যবহৃত হচ্ছে। এটি একটি ছোট বাব্ধের মতো যার গায়ে এক পাশে সংখ্যায় প্রামে ওজন প্রদর্শিত হয়। এর সাহায্যে দ্রব্যের মূল্যও নির্ণয়ের ব্যবস্থা আছে। কারণ এই ব্যালেন্সে ক্যালকুলেটরের সুবিধাও থাকে। প্রতি কিলোগ্রাম দ্রব্যের মূল্যমান দিয়ে প্রদর্শিত সংখ্যাকে ক্যালকুলেটরের নিয়মে গুণ করলেই দ্রব্যের মোট মূল্য পাওয়া যায়। এ জন্য এই ব্যালেন্স ব্যবহার করা সুবিধাজনক। তবে বেশি পরিমাণ দ্রব্য ওজন করতে এখনও দাঁড়িপাল্লা ব্যবহার করা হয়।

পরিমাপ

কাজ: দলীয়ভাবে দাঁড়িপাল্লা অথবা ডিজিটাল ব্যালেন্স ব্যবহার করে ক্ষেল, পুস্তক, টিফিনবস্থের ওজন পরিমাপ করে মেট্রিক পদ্ধতিতে লেখ।

৩-৪ তরল পদার্থের আয়তন পরিমাপ

কোনো তরল পদার্থ যতটা জায়গা জুড়ে থাকে তা এর আয়তন।

একটি ঘনবস্তুর দৈর্ঘ্য, প্রস্থ, উচ্চতা আছে। কিন্তু কোনো তরল পদার্থের তা নেই। যে পাত্রে রাখা হয় সেই পাত্রের আকার ধারণ করে। এ জন্য নির্দিষ্ট আয়তনের কোনো ঘনবস্তুর আকৃতির মাপনি দ্বারা তরল পদার্থ মাপা হয়। এ ক্ষেত্রে আমরা সাধারণত লিটার মাপনি ব্যবহার করি। এ মাপনিগুলো $\frac{5}{8}, \frac{5}{5}, 5, 5, 5, 9, 8, \dots$

ইত্যাদি লিটার বিশিষ্ট অ্যালুমিনিয়াম বা টিন শিট দ্বারা তৈরি এক প্রকারের কোণক আকৃতির পাত্র বা সিলিভার আকৃতির মগ। আবার স্বচ্ছ কাচের তৈরি ২৫, ৫০, ১০০, ২০০, ৩০০, ৫০০, ১০০০ মিলিলিটার দাগকাটা খাড়া পাত্রও ব্যবহার করা হয়। সাধারণত দুধ ও তৈল মাপার ক্ষেত্রে উল্লিখিত পাত্রগুলো ব্যবহার করা হয়।

১ লিটার মাপনি

১ লিটার দাগকটো মগ

ক্রেতা-বিক্রেতার সুবিধার্থে বর্তমানে ভোজ্যতেল বোতলজাত করে বিক্রি হচ্ছে। এ ক্ষেত্রে ১, ২, ৫ ও ৮ লিটারের বোতল বেশি ব্যবহৃত হয়। বিভিন্ন প্রকারের পানীয় ২৫০, ৫০০, ১০০০, ২০০০ মিলিলিটার বা অন্যান্য আয়তনে বোতলজাত করে বিক্রি করা হয়।

১ লিটার বোতল

৫ লিটার বোতল

১ ঘন সেন্টিমিটারকে সংক্ষেপে ইংরেজিতে সি. সি. (Cubic Centimetre) লেখা হয়।

১ ঘন সে.মি. (সি.সি.) = ১ মিলিলিটার	১ ঘন ইঞ্চি = ১৬-৩৯ মিলিলিটার (প্রায়)
------------------------------------	---------------------------------------

আয়তন পরিমাপে মেট্রিক এককাবলি

১০০০ ঘন সেন্টিমিটার (ঘন সে. মি.) = ১ ঘন ডেসিমিটার (ঘ. ডেসিমি.)

১০০০ ঘন ডেসিমিটার = ১ ঘন মিটার (ঘ. মি.)

১০০০ ঘন সেন্টিমিটার = ১ লিটার ১ লিটার পানির ওজন = ১ কিলোগ্রাম

কাজ:

১। একটি পানীয়জ্ঞলের পাত্রের ধারণক্ষমতা কত সি. সি. তা পরিমাপ কর।

২। শিক্ষক কর্তৃক নির্ধারিত অজানা আয়তনের একটি পাত্রের আয়তন অনুমান কর। তারপর এর সঠিক আয়তন বের করে ভুলের পরিমাণ নির্ণয় কর।

উদাহরণ ১। ১৬ একর জমিতে ৪২০ মেট্রিক টন আলু উৎপন্ন হলে, ১ একর জমিতে কী পরিমাণ আলু উৎপন্ন হয়?

সমাধান: ১৬ একর জমিতে উৎপন্ন হয় ৪২০ মেট্রিক টন আলু

$$= 28 - \frac{5}{8}$$
 মে. টন বা ২৬ মেট্রিক টন ২ কুইন্টাল ৫০ কেজি আলু। $\boxed{ 5$ মে. টন $= 5000$ কেজি

∴ ১ একরে আলুর উৎপাদন ২৬ মেট্রিক টন ২৫০ কেজি।

উদাহরণ ২। রায়হান এক একর জমিতে ধান চাষ করে ৪ কুইন্টাল ধান পেয়েছে। প্রতি কেজি ধানে ৭০০ গ্রাম চাল হলে, সে কী পরিমাণ চাল পেল?

সমাধান: ১ কে. জি. ধানে চাল হয় ৭০০ গ্রাম

∴ প্রাপ্ত চালের পরিমাণ ২৮০ কেজি বা ২ কুইন্টাল ৮০ কেজি।

উদাহরণ ৩। একটি মোটরগাড়ি ১০ লিটার ডিজেলে ৮০ কিলোমিটার যায়। ১ কিলোমিটার যেতে কী পরিমাণ ডিজেলের প্রয়োজন?

সমাধান: ৮০ কিলোমিটার যায় ১০ লিটার ডিজেলে

$$\therefore$$
 ১ " $\frac{50}{60}$ " " $=\frac{5000}{6}$ মিলিলিটার বা ১২৫ মিলিলিটার ডিজেলে

∴ প্রয়োজনীয় ডিজেলের পরিমাণ ১২৫ মিলিলিটার।

পরিমাপ

উদাহরণ 8। একটি ত্রিভুজাকার ভূমির দৈর্ঘ্য ৬ মিটার ও উচ্চতা ৪ মিটার। ত্রিভুজাকার ক্ষেত্রটির ক্ষেত্রফল কত?

সমাধান : ত্রিভুজাকার ক্ষেত্রটির ক্ষেত্রফল
$$= rac{1}{2} imes (ভূমি imes উচ্চতা)$$
 $= rac{1}{2} imes (৬ imes 8) বর্গমিটার = ১২ বর্গমিটার$

∴ ত্রিভুজাকার ক্ষেত্রটির ক্ষেত্রফল ১২ বর্গমিটার।

উদাহরণ ৫। একটি ত্রিভুজাকৃতি জমির ক্ষেত্রফল ২১৬ বর্গমিটার। এর ভূমি ১৮ মিটার হলে, উচ্চতা নির্ণয় কর। সমাধান: আমরা জানি,

$$\frac{\mathsf{S}}{\mathsf{S}} \times$$
ভূমি \times উচ্চতা $=$ ত্রিভুজের ক্ষেত্রফল

বা,
$$\frac{3}{2} \times 3$$
৮ মিটার \times উচ্চতা = ২১৬ বর্গমিটার

বা, ৯ মিটার × উচ্চতা = ২১৬ বর্গমিটার

বা, উচ্চতা =
$$\frac{238}{8}$$
 মিটার বা ২৪ মিটার

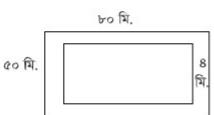
∴ উচ্চতা ২৪ মিটার।

উদাহরণ ৬। পাড়সহ একটি পুকুরের দৈর্ঘ্য ৮০ মিটার ও প্রস্থ ৫০ মিটার। যদি পুকুরের প্রত্যেক পাড়ের বিস্তার ৪ মিটার হয়, তবে পুকুরপাড়ের ক্ষেত্রফল কত?

সমাধান : পাড় বাদে পুকুরের দৈর্ঘ্য = {৮০ – (৪ × ২)} মিটার

= ৭২ মিটার

পাড় বাদে পুকুরের প্রস্থ $= \{ e_0 - (8 \times 2) \}$ মিটার = 82 মিটার


এখন পাড়সহ পুকুরের ক্ষেত্রফল = (৮০ × ৫০) বর্গমিটার = ৪০০০ বর্গমিটার

এবং পাড় বাদে পুকুরের ক্ষেত্রফল = (৭২ × ৪২) বর্গমিটার

= ৩০২৪ বর্গমিটার

∴ পুকুরপাড়ের ক্ষেত্রফল = (৪০০০ – ৩০২৪) বর্গমিটার = ৯৭৬ বর্গমিটার।

∴ পুকুরপাড়ের ক্ষেত্রফল ৯৭৬ বর্গমিটার।

2026

উদাহরণ ৭। একটি আয়তাকার ঘরের পরিসীমা একটি বর্গাকার ঘরের পরিসীমার সমান। আয়তাকার ঘরের দৈর্ঘ্য প্রস্তের ৩ গুণ। প্রতি বর্গমিটারে ৭৫ টাকা দরে ঘরের মেঝে কার্পেট দিয়ে মুড়তে মোট ১১০২৫ টাকা ব্যয় হয়।

- প্রস্থাকে 'ক' ধরে আয়তাকার ঘরের ক্ষেত্রফল 'ক' এর মাধ্যমে বের কর।
- (খ) আয়তাকার ঘরটির দৈর্ঘ্য ও প্রস্থ নির্ণয় কর।
- (গ) ৪০ সে.মি. বর্গাকার টাইলুস দ্বারা বর্গাকার ঘরের মেঝে ঢাকতে কয়টি টাইলুস লাগবে?
- সমাধান: (ক) মনে করি, আয়তাকার ঘরের প্রস্থ ক মিটার।

 সূতরাং দৈর্ঘ্য ৩ক মিটার

 অতএব ক্ষেত্রফল= (৩ক × ক) বর্গমিটার।

 = ৩ক^২ বর্গমিটার।
 - (খ) ঘরটিতে ৭৫ টাকা খরচ হয় ১ বর্গ মি. মেঝে মোড়াতে

= ১৪৭ বর্গমি, মেঝে মোড়াতে

সুতরাং মেঝের ক্ষেত্রফল ১৪৭ বর্গ মিটার।

প্রশ্নমতে, ৩কং= ১৪৭ ['ক' থেকে প্রাপ্ত]

বা কং =
$$\frac{389}{\circ}$$
 বা, কং = 85

বা, ক =√8৯ = ৭ মি.

সুতরাং ঘরটির প্রস্থ = ৭ মি.

সুতরাং ঘরটির দৈর্ঘ্য = ৩ ক মি.= (৩ x ৭)= ২১ মি.

অতএব দৈৰ্ঘ্য ২১ মি., প্ৰস্থ ৭ মি.

(গ) খ থেকে প্রাপ্ত আয়তাকার ঘরের দৈর্ঘ্য ২১ মিটার এবং প্রস্থ ৭ মিটার আয়তাকার ঘরের পরিসীমা = ২ (২১+৭) মিটার = ৫৬ মিটার বর্গাকার ঘরের পরিসীমা=৫৬ মিটার। বর্গাকার ঘরের বাহুর দৈর্ঘ্য ক্রি মিটার=১৪ মিটার। বর্গক্ষেত্রের মেঝের ক্ষেত্রফল = (১৪ × ১৪) বর্গমিটার = ১৯৬ বর্গমিটার। একটি বর্গাকার পাথরের ক্ষেত্রফল ৪০ সে.মি. × ৪০ সে.মি.

= 0.8 মিটার × 0.8 মিটার = 0.১৬ বর্গমিটার

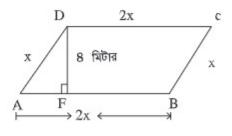
অতএব বর্গাকার ঘরের মেঝে ঢাকতে টাইল্স লাগবে= ১৯৬ টি = ১২২৫টি।

অনুশীলনী ৩

1 4	১ বর্গফু	ট = কত বৰ্গ সে.মি.?						
	(季)	৭২৯ বর্গ সে.মি.	(왕)	৮২৯ বর্গ সে.মি.				
	(গ)	৯২৯ বৰ্গ সে.মি.	(旬)	৯৯২ বর্গ সে.মি.				
21				টার হলে তলগুলোর ক্ষেত্রফল নিচের কোনটি?				
	(季)	৫৪ বর্গমিটার	(খ)	১৮ বর্গমিটার				
	(91)	৯ বর্গমিটার	(ঘ)	৯ মিটার				
	নিচের 🔻	তথ্যের আলোকে ৩ ও ৪	নং প্রয়	শ্নর উত্তর দাও :				
	একটি গ	আয়তাকার বাগানের দৈর্ঘ	্য প্রস্তের	্য তিনগুণ। এর চারদিকে একবার প্রদক্ষিণ করলে হাঁটা হয় ৪০০ মিটার।				
01	বাগাৰে	নর দৈর্ঘ্য কত মিটার?						
	(季)	60	(학)	>00				
	(গ)	760	(ঘ)	200				
81	বাগা	নর ক্ষেত্রফল কত বর্গমিট	ার?					
	(季)	800	(刘)	2000				
	(গ)	6000	(ঘ)	9000				
Œ I	ল্যাটি	ন ভাষায় ডেসি অর্থ কী?						
	(季)	পঞ্চমাংশ	(뉙)	দশমাংশ				
	(গ)	সহস্রাংশ	(ঘ)	শতাংশ				
		তথ্যের আলোকে ৬ ও ৭ জমির দৈর্ঘ্য ২০ মিটার এ						
ঙ।	ঐ জ	মর পরিসীমা কত?						
	(季)	৩৫ মিটার	(학)	৭০ মিটার				
	(গ)			৩০০ মিটার				
٩١			5 1	তৈরি করা হল। রাস্তাবাদ জমির ক্ষেত্রফল কত বর্গমিটার?				
	(季)	90	(학)	258				
	(গ)	১৭৬	(ঘ)	000				
br 1	কিলে	মিটারে প্রকাশ কর।						
	(ক)	৪০৩৯০ সে. মি.		(খ) ৭৫ মিটার ২৫০ মি. মি.				
৯।	æ.09	৷ ডেকামিটারকে মিটার	ও ডেগি	সমিটারে প্রকাশ কর।				
201	নিচে	কয়েকটি ত্রিভূজাকার ৫	ক্ষত্রের	ভূমি ও উচ্চতা দেওয়া হলো। ত্রিভূজাকার ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর।				
	(ক)	ভূমি ১০মি. ও উচ্চতা ৩	৯ মি.।					
	(খ) ভূমি ২৫ সে .মি. ও উচ্চতা ১৪ সে. মি.।							

১১। একটি আয়তাকার ক্ষেত্রের দৈর্ঘ্য প্রস্তের ৩ গুণ। এর চারিদিকে একবার প্রদক্ষিণ করলে ১ কিলোমিটার

১২। প্রতি মিটার ১০০ টাকা দরে ১০০ মিটার লম্বা ও ৫০ মিটার চওড়া একটি আয়তাকার পার্কের


হাঁটা হয়। আয়তাকার ক্ষেত্রটির দৈর্ঘ্য ও প্রস্থ নির্ণয় কর।

চারিদিকে বেড়া দিতে কত খরচ লাগবে?

- ১৩। একটি সামান্তরিক ক্ষেত্রের ভূমি ৪০ মিটার ও উচ্চতা ৫০ মিটার। এর ক্ষেত্রফল নির্ণয় কর।
- ১৪। একটি ঘনকের একধারের দৈর্ঘ্য ৪ মিটার। ঘনকটির তলগুলোর ক্ষেত্রফল নির্ণয় কর।
- ১৫। যোসেফ তাঁর এক খণ্ড জমিতে ৫ কুইন্টাল ৭০০ গ্রাম আলু উৎপাদন করেন। তিনি একই ক্ষেত্রফলবিশিষ্ট ১১ খণ্ড জমিতে কী পরিমাণ আলু উৎপাদন করবেন?
- ১৬। পরেশের ১৬ একর জমিতে ২৮ মেট্রিক টন ধান উৎপন্ন হয়েছে। তাঁর প্রতি একর জমিতে কী পরিমাণ ধান হয়েছে?
- ১৭। একটি স্টিল মিলে এক মাসে ২০০০০ মেট্রিক টন রড তৈরি হয়। ঐ মিলে দৈনিক কী পরিমাণ রড তৈরি হয়?
- ১৮। এক ব্যবসায়ী কোনো একদিন ২০ কে. জি. ৪০০ গ্রাম ভাল বিক্রয় করেন। এ হিসাবে কী পরিমাণ ভাল তিনি এক মাসে বিক্রয় করবেন?
- ১৯। একখণ্ড জমিতে ২০ কে. জি. ৮৫০ গ্রাম সরিষা উৎপন্ন হলে, অনুরূপ ৭ খণ্ড জমিতে মোট কী পরিমাণ সরিষা উৎপন্ন হবে?
- ২০। একটি মগের ভিতরের আয়তন ১৫০০ ঘন সেন্টিমিটার হলে, ২৭০ লিটারে কত মগ পানি হবে?
- ২১। এক ব্যবসায়ী কোনো একদিন ১৮ কে. জি. ৩০০ গ্রাম চাল এবং ৫ কে. জি. ৭৫০ গ্রাম লবণ বিক্রয় করেন। এ হিসাবে মাসে তিনি কী পরিমাণ চাল ও লবণ বিক্রয় করেন?
- ২২। কোনো পরিবারে দৈনিক ১-২৫ লিটার দুধ লাগে। প্রতি লিটার দুধের দাম ৫২ টাকা হলে, ঐ পরিবারে ৩০ দিনে কত টাকার দুধ লাগবে?
- ২৩। একটি আয়তাকার বাগানের দৈর্ঘ্য ও প্রস্থ যথাক্রমে ৬০ মিটার, ৪০ মিটার। এর ভিতরে চতুর্দিকে ২ মিটার চওডা রাস্তা আছে। রাস্তাটির ক্ষেত্রফল নির্ণয় কর।
- ২৪। একটি ঘরের দৈর্ঘ্য, প্রস্থের ৩ গুণ। প্রতি বর্গমিটারে ৭.৫০ টাকা দরে ঘরের মেঝে কার্পেট দিয়ে মুড়তে মোট ১১০২.৫০ টাকা ব্যয় হয়। ঘরটির দৈর্ঘ্য ও প্রস্থ নির্ণয় কর।
- ২৫। একটি আয়তাকার বাগানের দৈর্ঘ্য ৫০ মি. এবং প্রস্তু ৩০ মি. এবং বাগানের ভিতরের চারিদিকে ৩ মিটার চওড়া রাস্তা আছে।
 - ক) উপরের তথ্যের আলোকে আনুপাতিক চিত্র অঞ্জন কর।
 - খ) রাস্তার ক্ষেত্রফল নির্ণয় কর।
 - গ) রাস্তাবাদে বাগানের পরিসীমায় বেড়া দিতে প্রতিমিটারে ২৫ টাকা হিসাবে মোট কত খরচ হবে?
- ২৬। একটি সামান্তরিক ক্ষেত্রের ভূমি ৪০ মি ও উচ্চতা ৩০ মি। সামান্তরিকের ক্ষেত্রফল বর্গক্ষেত্রের ক্ষেত্রফলের সমান।
 - ক) চিত্রসহ সামান্তরিকের সংজ্ঞা লিখ।
 - খ) সামান্তরিকের ক্ষেত্রফল নির্ণয় কর।
 - গ) বর্গক্ষেত্রের পরিসীমা নির্ণয় কর।

পরিমাপ

291

চিত্রে ABCD সামান্তরিকটির পরিসীমা ৩০ মিটার।

- ক) সামান্তরিকের ক্ষুদ্রতম বাহুর দৈর্ঘ্য বের কর।
- খ) ADF ত্রিভুজের ক্ষেত্রফল নির্ণয় কর।
- গ) $\square BCDF$ ক্ষেত্রফল কত বর্গসেন্টিমিটার তা নির্ণয় কর।

চতুর্থ অধ্যায়

বীজগণিতীয় রাশির গুণ ও ভাগ

গণিতের চারটি মৌলিক প্রক্রিয়া হলো যোগ, বিয়োগ, গুণ ও ভাগ। বিয়োগ হচ্ছে যোগের বিপরীত প্রক্রিয়া আর ভাগ হচ্ছে গুণের বিপরীত প্রক্রিয়া। পাটিগণিতে কেবল ধনাত্মক চিহ্নযুক্ত সংখ্যা ব্যবহার করা হয়। কিন্তু বীজগণিতে ধনাত্মক ও ঋণাত্মক উভয় চিহ্নযুক্ত সংখ্যা এবং সংখ্যাসূচক প্রতীকও ব্যবহার করা হয়। আমরা ষষ্ঠ শ্রেণিতে চিহ্নযুক্ত রাশির যোগ-বিয়োগ এবং বীজগণিতীয় রাশির যোগ ও বিয়োগ সম্বন্ধে ধারণা পেয়েছি। এ অধ্যায়ে চিহ্নযুক্ত রাশির গুণ ও ভাগ এবং বীজগণিতীয় রাশির গুণ ও ভাগ প্রক্রিয়া সম্বন্ধে আলোচনা করা হয়েছে।

অধ্যায় শেষে শিক্ষার্থীরা —

- বীজগণিতীয় রাশির গুণ ও ভাগ করতে পারবে।
- বন্ধনী ব্যবহারের মাধ্যমে বীজগণিতীয় রাশির যোগ, বিয়োগ, গুণ ও ভাগ সংক্রান্ত দৈনন্দিন জীবনের সমস্যার সমাধান করতে পারবে।

8.১ বীজগণিতীয় রাশির গুণ

গুণের বিনিময়বিধি

আমরা জানি, $2 \times 3 = 6$, আবার $3 \times 2 = 6$

∴ $2 \times 3 = 3 \times 2$, যা গুণের বিনিময়বিধি।

a,b যেকোনো দুটি বীজগণিতীয় রাশি হলে, $a \times b = b \times a$ অর্থাৎ, গুণ্য ও গুণকের স্থান বিনিময় করলে, গুণফলের কোনো পরিবর্তন হয় না। যা সাধারণ বিনিময়বিধি।

গুণের সংযোগবিধি

$$(2 \times 3) \times 4 = 6 \times 4 = 24$$
; আবার, $2 \times (3 \times 4) = 2 \times 12 = 24$

∴
$$(2 \times 3) \times 4 = 2 \times (3 \times 4)$$
, যা গুণের সংযোগবিধি।

a,b,c যেকোনো তিনটি বীজগণিতীয় রাশির জন্য $(a \times b) \times c = a \times (b \times c)$, যা গুণের সংযোগবিধি।

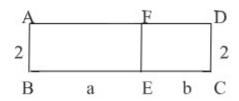
গুণের সূচকবিধি

আমরা জানি, $a \times a = a^2$, $a \times a \times a = a^3$, $a \times a \times a \times a = a^4$ $\therefore a^2 \times a^4 = (a \times a) \times (a \times a \times a \times a) = a \times a \times a \times a \times a \times a = a^6 = a^{2+4}$ সাধারণভাবে, $a^m \times a^n = a^{m+n}$ যেখানে m, n যেকোনো স্বাভাবিক সংখ্যা। এই প্রক্রিয়াকে গুণের সূচকবিধি বলা হয়।

আবার,
$$(a^3)^2 = a^3 \times a^3 = a^6 = a^{3 \times 2} = a^6$$

সাধারণভাবে, $(a^m)^n = a^{mn}$

গুণের বন্টন বিধি


আমরা জানি,
$$2(a+b) = (a+b) + (a+b)$$
 [:: $2x = x + x$]
= $(a+a) + (b+b)$
= $2a + 2b$

আবার পাশের চিত্র হতে পাই.

ABEF আয়তক্ষেত্রটির ক্ষেত্রফল

$$=$$
 দৈর্ঘ্য $imes$ প্রস্থ $=$ $BE imes AB = a imes 2 = 2 imes a = 2a$

আবার, ECDF আয়তক্ষেত্রটির ক্ষেত্রফল = দৈর্ঘ্য × প্রস্থ

$$= EC \times CD = b \times 2 = 2 \times b = 2b$$

:. ABCD আয়তক্ষেত্রটির ক্ষেত্রফল

= ABEF আয়তক্ষেত্রের ক্ষেত্রফল + ECDF আয়তক্ষেত্রের ক্ষেত্রফল

$$= 2a + 2b$$

আবার, ABCD আয়তক্ষেত্রের ক্ষেত্রফল

$$= BC \times AB$$

$$= AB \times (BE + EC)$$
 [: BC=BE+EC]

$$= 2 \times (a+b) = 2(a+b)$$

$$\therefore 2(a+b) = 2a+2b.$$

$$m(a+b+c+.....)=ma+mb+mc+.....$$
এই নিয়মকে গুণের বন্টানবিধি বলা হয়।

৪-২ চিহ্নযুক্ত রাশির গুণ

আমরা জানি, 2 কে 4 বার নিলে $2+2+2+2=8=2\times 4$ হয়। এখানে বলা যায় যে, 2 কে 4 দারা গুণ করা হয়েছে।

অর্থাৎ,
$$2 \times 4 = 2 + 2 + 2 + 2 = 8$$

যেকোনো বীজগণিতীয় রাশি a ও b এর জন্য

$$a \times b = ab$$
(i)

৪.৩ একপদী রাশিকে একপদী রাশি দ্বারা গুণ

একই চিহ্নযুক্ত দুটি রাশির গুণফল (+) চিহ্নযুক্ত হবে।

* বিপরীত চিহ্নযুক্ত দুটি রাশির গুণফল (—) চিহ্নযুক্ত হবে।

দুটি একপদী রাশির গুণের ক্ষেত্রে তাদের সাংখ্যিক সহগদ্বয়কে চিহ্নযুক্ত সংখ্যার গুণের নিয়মে গুণ করতে হয়। উভয়পদে বিদ্যমান বীজগণিতীয় প্রতীকগুলোকে সূচক নিয়মে গুণ করে গুণফলে লিখতে হয়। অন্যান্য প্রতীকণ্ডলো অপরিবর্তিত অবস্থায় গুণফলে নেওয়া হয়।

উদাহরণ ১ ।
$$5x^2y^4$$
 কে $3x^2y^3$ দ্বারা গুণ কর । উদাহরণ ২ । $12a^2xy^2$ কে $-6ax^3b$ দ্বারা গুণ কর । সমাধান : $5x^2y^4\times 3x^2y^3$ কর । সমাধান : $12a^2xy^2\times (-6ax^3b)$ $= 15x^4y^7$ [সূচক নিয়ম অনুযায়ী] $= 15x^4y^7$ [সূচক নিয়ম অনুযায়ী] $= -72a^3bx^4y^2$ নির্ণেয় গুণফল $15x^4y^7$

বীজগণিতীয় রাশির গুণ ও ভাগ ලන

উদাহরণ ৩ । $-7a^2b^4c$ কে $4a^2c^3d$ দাবা

সমাধান: $(-7a^2b^4c) \times 4a^2c^3d$ $= (-7 \times 4) \times (a^2 \times a^2) \times b^4 \times (c \times c^3) \times d$ $=-28a^4b^4c^4d$ নির্ণেয় গুণফল $-28a^4b^4c^4d$

উদাহরণ 8 । $-5a^3hc^5$ কে $-4ah^5c^2$ ছারা

সমাধান: $(-5a^3bc^5) \times (-4ab^5c^2)$ $= (-5) \times (-4) \times (a^3 \times a) \times (b \times b^5) \times (c^5 \times c^2)$ $=20a^4b^6c^7$ নির্ণেয় গুণফল $20a^4b^6c^7$

কাজ: ১। গুণ কর।

(ক) $7a^2h^5$ কে $8a^5h^2$ দ্বাবা

 $(\forall) -10x^3v^4z$ of $3x^2v^5$ fight

(গ) $9ab^2x^3y$ কে $-5xy^2$ দারা (ঘ) $-8a^3x^4by^2$ কে -4abxy দারা

8.8 বহুপদী রাশিকে একপদী রাশি দ্বারা গুণ

একের অধিক পদযুক্ত বীজগণিতীয় রাশিই বহুপদী রাশি। যেমন, $5x^2y + 7xy^2$ একটি বহুপদী রাশি। বহুপদী রাশিকে একপদী রাশি দ্বারা গুণ করতে হলে গুণ্যের (প্রথম রাশি) প্রত্যেক পদকে গুণক (দ্বিতীয় রাশি) দ্বারা গুণ করতে হয়।

উদাহরণ ৫। $(5x^2y + 7xy^2)$ কে $5x^3y^3$ দ্বারা গুণ কর।

সমাধান :
$$(5x^2y + 7xy^2) \times 5x^3y^3$$
 $= (5x^2y \times 5x^3y^3) + (7xy^2 \times 5x^3y^3)$ [বন্টনবিধি অনুসারে] $= (5 \times 5) \times (x^2 \times x^3) \times (y \times y^3) + (7 \times 5) \times (x \times x^3) \times (y^2 \times y^3)$ $= 25x^5y^4 + 35x^4y^5$ নির্ণেয় গুণফল $25x^5y^4 + 35x^4y^5$

উদাহরণ ৬। $2a^3 - b^3 + 3abc$ কে a^4b^2 দ্বারা গুণ কর।

সমাধান :
$$(2a^3 - b^3 + 3abc) \times a^4b^2$$

= $(2a^3 \times a^4b^2) - (b^3 \times a^4b^2) + (3abc \times a^4b^2)$
= $2a^7b^2 - a^4b^5 + 3a^5b^3c$

৫৪

বিকল্প পদ্ধতি :
$$2a^3 - b^3 + 3abc$$

$$\frac{\times a^4 b^2}{2a^7 b^2 - a^4 b^5 + 3a^5 b^3 c}$$

নির্ণেয় গুণফল $2a^7b^2 - a^4b^5 + 3a^5b^3c$

উদাহরণ ৭।
$$-3x^2zy^3 + 4z^3xy^2 - 5y^4x^3z^2$$
 কে $-6x^2y^2z$ দ্বারা গুণ কর।

সমাধান :
$$(-3x^2zy^3+4z^3xy^2-5y^4x^3z^2)\times(-6x^2y^2z)$$

 $=(-3x^2zy^3)\times(-6x^2y^2z)+(4z^3xy^2)\times(-6x^2y^2z)-(5y^4x^3z^2)\times(-6x^2y^2z)$
 $=\{(-3)\times(-6)\times x^2\times x^2\times y^3\times y^2\times z\times z\}+\{4\times(-6)\times x\times x^2\times y^2\times y^2\times z^3\times z\}$
 $-\{5\times(-6)\times x^3\times x^2\times y^4\times y^2\times z^2\times z\}$
 $=18x^4y^5z^2+(-24x^3y^4z^4)-(-30x^5y^6z^3)$
 $=18x^4y^5z^2-24x^3y^4z^4+30x^5y^6z^3$
নির্ণেয় গুণফল $18x^4y^5z^2-24x^3y^4z^4+30x^5y^6z^3$

কাজ: ১। প্রথম রাশিকে দ্বিতীয় রাশি দ্বারা গুণ কর:

$$(\Phi) 5a^2 + 8b^2, 4ab$$

$$(4)$$
 $3p^2q + 6pq^3 + 10p^3q^5$, $8p^3q^2$

$$(9)$$
 $-2c^2d + 3d^3c - 5cd^2, -7c^3d^5$

8-৫ বহুপদী রাশিকে বহুপদী রাশি দ্বারা গুণ

- বহুপদী রাশিকে বহুপদী রাশি দ্বারা গুণ করতে হলে গুণ্যের প্রত্যেক পদকে গুণকের প্রত্যেক পদ দ্বারা আলাদা আলাদাভাবে গুণ করে সদৃশ পদগুলোকে নিচে নিচে সাজিয়ে লিখতে হয়।
- চিহ্নযুক্ত রাশির যোগের নিয়মে যোগ করতে হয়।
- বিসদৃশ পদ থাকলে সেগুলোকে পৃথকভাবে লিখতে হয়় এবং গুণফলে বসাতে হয় ।

উদাহরণ ৮। 3x + 2y কে x + y দারা গুণ কর।

बाधाः
$$3x 2y$$

$$x 3x^2 2xy$$

$$y 3xy 2y^2$$

$$(3x+2y)\times(x+y)$$

$$= 3x^2 + 5xy + 2y^2$$

308G

গুণের নিয়ম:

- প্রথমে গুণ্যের প্রত্যেক পদকে গুণকের প্রথম পদ দ্বারা গুণ করে গুণফল লিখতে হবে।
- এরপর গুণ্যের প্রত্যেক পদকে গুণকের দ্বিতীয় পদ দ্বারা গুণ করে গুণফল বের করতে হবে। এ
 গুণফলকে এমনভাবে সাজিয়ে লিখতে হবে যেন উভয় গুণফলের সদৃশ পদগুলো নিচে নিচে পড়ে।
- প্রাপ্ত দৃটি গুণফলের বীজগণিতীয় সমষ্টিই হলো নির্ণেয় গুণফল।

উদাহরণ ৯। $a^2 - 2ab + b^2$ কে a - b দ্বারা গুণ কর।

সমাধান :
$$a^2-2ab+b^2$$
 ৩ণ্য
$$\frac{a-b}{a^3-2a^2b+ab^2}$$
 ৩ণ্ক
$$\frac{-a^2b+2ab^2-b^3}{a^3-3a^2b+3ab^2-b^3}$$
 ৩ণ্ফল
নির্ণেয় গুণফল $a^3-3a^2b+3ab^2-b^3$

উদাহরণ ১০। $2x^2 + 3x - 4$ কে $3x^2 - 4x - 5$ দ্বারা গুণ কর।

সমাধান:
$$2x^2 + 3x - 4$$
 ৩ণ্য ৩ণ্য ৩ণ্য ৩ণ্ক ৩ণ্ক ৩ণ্ক তথ্য তথ্য ৩ণ্ক $-8x^3 - 12x^2 + 16x$ $-10x^2 - 15x + 20$ -5 দ্বারা গুণ তথ্য তথ্য করে, $6x^4 + x^3 - 34x^2 + x + 20$

নির্ণেয় গুণফল $6x^4 + x^3 - 34x^2 + x + 20$

কাজ: ১ম রাশিকে ২য় রাশি দ্বারা গুণ কর।

(ক)
$$x+7$$
, $x+9$

(খ) a^2-ab+b^2 , $3a+4b$

(গ) x^2-x+1 , $1+x+x^2$

গ্ৰিভ

১০ (১) ।
$$A = x^2 - xy + y^2$$
, $B = x^2 + xy + y^2$ এবং $C = x^4 + x^2y^2 + y^4$

খ) A ও B এর গুণফল নির্ণয় কর।

গ) দেখাও যে,
$$(C \div A)/B = 1$$

উত্তর: ক)
$$A - B$$

$$= (x^2 - xy + y^2) - (x^2 + xy + y^2)$$

$$= x^2 - xy + y^2 - x^2 - xy - y^2$$

$$= -2xy \quad Ans.$$

ৰ\)
$$A \subseteq B \subseteq A \subseteq A = A \times B$$

$$= (x^2 - xy + y^2) \times (x^2 + xy + y^2)$$

$$= (x^2 + y^2 - xy)(x^2 + y^2 + xy)$$

$$= (x^2 + y^2)^2 - (xy)^2$$

$$= (x^2)^2 + 2x^2 \cdot y^2 + (y^2)^2 - x^2 y^2$$

$$= x^4 + 2x^2 y^2 + y^4 - x^2 y^2$$

$$= x^4 + x^2 y^2 + y^4 - Ans.$$

গ) বামপক
$$(C \div A)/B$$

$$= \{(x^4 + x^2y^2 + y^4) \div (x^2 - xy + y^2)\}/(x^2 + xy + y^2)$$

$$= \frac{x^4 + x^2y^2 + y^4}{x^2 - xy + y^2} \times \frac{1}{(x^2 + xy + y^2)}$$

$$= \frac{(x^2 + xy + y^2)(x^2 - xy + y^2)}{(x^2 - xy + y^2)} \times \frac{1}{(x^2 + xy + y^2)} \quad [$$
খ থেকে প্রাপ্ত]
$$= 1$$

অতএব, বামপক্ষ = ডানপক্ষ (দেখানো হলো)

অনুশীলনী ৪-১

১ম রাশিকে ২য় রাশি দ্বারা গুণ কর (১ থেকে ২৪)।

১।
$$3ab$$
, $4a^3$

হ। $5xy$, $6az$

হ। $5a^2x^2$, $3ax^5y$

হ। $-2abx^2$, $10b^3xyz$

হ। $-2abx^2$, $10b^3xyz$

হ। $-3p^2q^3$, $-6p^5q^4$

হ। $-12m^2a^2x^3$, $-2ma^2x^2$

হ। $-3x^3bx^5y^2$, $-3x^5y^3a^2b^2$

হ। $2x+3y$, $5xy$

হ। $2a^2-3b^2+c^2$, a^3b^2

হ। $2a^2-3b$, $3a+2b$

হ। $2a-3b$, $3a+2b$

হ। x^3-y^3+3xyz , x^4y

হ। $2a-3b$, $3a+2b$

হ। x^2+1 , x^2-1

হ। $x^2+2xy+y^2$, $x+y$

হ) $x^2-2xy+y^2$, $x-y$

হ) $x^2+2xy+y^2$, $x+y$

হ) x^2+2x-3 , $x+3$

ε) x^2+2x-3 , $x+3$

ε) x^2+2x-3 , $x+3$

ε) x^2+2x-3

ε) x^2+2x-3

ε) x^2+2x-3

ε) x^2+2x-3

ε) x^2

৪.৬ বীজগণিতীয় রাশির ভাগ

ভাগের সূচক বিধি

$$a^5\div a^2=rac{a^5}{a^2}=rac{a imes a imes a imes a imes a}{a imes a}=a imes a imes a$$
 [লব ও হর থেকে সাধারণ উৎপাদক বর্জন করে]।
$$=a^3=a^{5-2},\ a\neq 0$$

সাধারণভাবে, $a^m \div a^n = a^{m-n}$, যেখানে m ও n স্বাভাবিক সংখ্যা এবং $m>n, a \neq 0$. এই প্রক্রিয়াকে ভাগের সূচক বিধি বলা হয়।

লক্ষ করি : a ≠ 0 হলে,
ফর্মা নং-৮, গণিত-৭ম শ্রেণি

$$a^m \div a^m = \frac{a^m}{a^m} = a^{m-m} = a^0$$
আবার, $a^m \div a^m = \frac{a^m}{a^m} = 1$
 $\therefore a^0 = 1, \ (a \neq 0)$
অনুসিদ্ধান্ত : $a^0 = 1, \ a \neq 0$

8.৭ চিহ্নযুক্ত রাশির ভাগ

আমরা জানি,
$$a \times (-b) = (-a) \times b = -ab$$

সূতরাং, $-ab \div a = -b$
একইভাবে, $-ab \div b = -a$
 $-ab \div (-a) = b$
 $-ab \div (-b) = a$
 $-ab \div (-b) = a$

$$-\frac{ab}{a} = \frac{a \times (-b)}{a} = -b$$

$$\frac{-ab}{b} = \frac{(-a) \times b}{b} = -a$$

$$\frac{-ab}{-a} = \frac{(-a) \times b}{-a} = b$$

$$\frac{-ab}{-b} = \frac{a \times (-b)}{-b} = a$$

লক্ষ করি:

- একই চিহ্নযুক্ত দৃটি রাশির ভাগফল (+) চিহ্নযুক্ত হবে।
- বিপরীত চিহ্নযুক্ত দুটি রাশির ভাগফল (–) চিহ্নযুক্ত হবে।

$$\frac{+ 1}{+ 1} = + 1$$

$$\frac{- 1}{- 1} = + 1$$

$$\frac{- 1}{+ 1} = - 1$$

$$\frac{+ 1}{- 1} = - 1$$

8.৮ একপদী রাশিকে একপদী রাশি দ্বারা ভাগ

একপদী রাশিকে একপদী রাশি দ্বারা ভাগ করতে হলে, সাংখ্যিক সহগকে পাটিগণিতীয় নিয়মে ভাগ এবং বীজগণিতীয় প্রতীককে সূচক নিয়মে ভাগ করতে হয়। উদাহরণ ১১। $10a^5b^7$ কে $5a^2b^3$ দ্বারা ভাগ কর।

সমাধান :
$$\frac{10a^5b^7}{5a^2b^3} = \frac{10}{5} \times \frac{a^5}{a^2} \times \frac{b^7}{b^3}$$
$$= 2 \times a^{5-2} \times b^{7-3} = 2a^3b^4$$

নির্ণেয় ভাগফল $2a^3b^4$

উদাহরণ ১২। $40x^8y^{10}z^5$ কে $-8x^4y^2z^4$ দ্বারা ভাগ কর।

সমাধান :
$$\frac{40x^8y^{10}z^5}{-8x^4y^2z^4} = \frac{40}{-8} \times \frac{x^8}{x^4} \times \frac{y^{10}}{y^2} \times \frac{z^5}{z^4}$$
$$= -5 \times x^{8-4} \times y^{10-2} \times z^{5-4} = -5x^4y^8z$$

নির্ণেয় ভাগফল $-5x^4y^8z$

উদাহরণ ১৩। $-45x^{13}y^9z^4$ কে $-5x^6y^3z^2$ দ্বারা ভাগ কর।

সমাধান :
$$\frac{-45x^{13}y^9z^4}{-5x^6y^3z^2} = \frac{-45}{-5} \times \frac{x^{13}}{x^6} \times \frac{y^9}{y^3} \times \frac{z^4}{z^2}$$
$$= 9 \times x^{13-6} \times y^{9-3} \times z^{4-2} = 9x^7y^6z^2$$

নির্ণেয় ভাগফল $9x^7y^6z^2$

কাজ: প্রথম রাশিকে দ্বিতীয় রাশি দ্বারা ভাগ কর।

$$(\overline{\Phi}) 12a^3b^5c$$
, $3ab^2$

$$(4) - 28p^3q^2r^5, 7p^2qr^3$$

(গ)
$$35x^5y^7$$
, $-5x^5y^2$

$$(\P) - 40x^{10}y^5z^9, -8x^6y^2z^5$$

৪-৯ বহুপদী রাশিকে একপদী রাশি দ্বারা ভাগ

আমরা জানি, a+b+c একটি বহুপদী রাশি।

৬০

এখন
$$(a+b+c) \div d$$

$$= (a+b+c) \times \frac{1}{d}$$

$$= a \times \frac{1}{d} + b \times \frac{1}{d} + c \times \frac{1}{d}$$

$$= \frac{a}{d} + \frac{b}{d} + \frac{c}{d}$$
আবার, $(a+b+c) \div d$

$$= \frac{a+b+c}{d} = \frac{a}{d} + \frac{b}{d} + \frac{c}{d}$$

উদাহরণ ১৪ । $10x^5y^3 - 12x^3y^8 + 6x^4y^7$ কে $2x^2y^2$ দ্বারা ভাগ কর ।

সমাধান :
$$\frac{10x^5y^3 - 12x^3y^8 + 6x^4y^7}{2x^2y^2}$$

$$= \frac{10x^5y^3}{2x^2y^2} - \frac{12x^3y^8}{2x^2y^2} + \frac{6x^4y^7}{2x^2y^2}$$

$$= 5x^{5-2}y^{3-2} - 6x^{3-2}y^{8-2} + 3x^{4-2}y^{7-2}$$

$$= 5x^3y - 6xy^6 + 3x^2y^5$$

নির্ণেয় ভাগফল $5x^3y - 6xy^6 + 3x^2y^5$

উদাহরণ ১৫। $35a^5b^4c + 20a^6b^8c^3 - 40a^5b^6c^4$ কে $5a^2b^3c$ দারা ভাগ কর।

সমাধান :
$$\frac{35a^5b^4c + 20a^6b^8c^3 - 40a^5b^6c^4}{5a^2b^3c}$$

$$= \frac{35a^5b^4c}{5a^2b^3c} + \frac{20a^6b^8c^3}{5a^2b^3c} - \frac{40a^5b^6c^4}{5a^2b^3c}$$

$$= 7a^{5-2}b^{4-3}c^{1-1} + 4a^{6-2}b^{8-3}c^{3-1} - 8a^{5-2}b^{6-3}c^{4-1}$$

$$= 7a^3b + 4a^4b^5c^2 - 8a^3b^3c^3 \qquad [\because c^{1-1} = c^0 = 1]$$

নির্ণেয় ভাগফল $7a^3b + 4a^4b^5c^2 - 8a^3b^3c^3$

কাজ: ১।
$$9x^4y^5 + 12x^8y^5 + 21x^9y^6$$
 কে $3x^3y^2$ দারা ভাগ কর। ২। $28a^5b^6 - 16a^6b^8 - 20a^7b^5$ কে $4a^4b^3$ দারা ভাগ কর।

8-১০ বহুপদী রাশিকে বহুপদী রাশি দ্বারা ভাগ

বহুপদী রাশিকে বহুপদী রাশি দ্বারা ভাগ করার ক্ষেত্রে প্রথমে ভাজ্য ও ভাজক উভয়ের মধ্যে আছে এমন একটি বীজগণিতীয় প্রতীকের ঘাতের অধ্যক্রম অনুসারে রাশিদ্বয়কে সাজাতে হবে। যেমন $x^2+2x^4+110-48x$ একটি বহুপদী। একে x এর মানের অধ্যক্রম অনুসারে সাজালে আমরা পাই : $2x^4+\ x^2-48x+110$ । এরপর পাটিগণিতের ভাগ প্রক্রিয়ার মতো নিচের নিয়মে ধাপে ধাপে ভাগ করতে হবে।

- ভাজ্যের প্রথম পদটিকে ভাজকের প্রথম পদ দ্বারা ভাগ করলে যে ভাগফল হয় তা নির্ণেয় ভাগফলের
 প্রথম পদ।
- ভাগফলের ঐ প্রথম পদ দ্বারা ভাজকের প্রত্যেক পদকে গুণ করে গুণফল সদৃশ পদ অনুযায়ী ভাজ্যের নিচে বসিয়ে ভাজ্য থেকে বিয়োগ করতে হয়।
- বিয়োগফল নতুন ভাজ্য হবে ৷ বিয়োগফল এমনভাবে লিখতে হবে যেন তা আগের মতো বিবেচ্য প্রতীকের অধ্যক্রম অনুসারে থাকে ৷
- নতুন ভাজ্যের প্রথম পদটিকে ভাজকের প্রথম পদ দ্বারা ভাগ করলে যে ভাগফল হয় তা নির্ণেয় ভাগফলের দ্বিতীয় পদ।
- এভাবে ক্রমান্বয়ে ভাগ করতে হয়।

উদাহরণ ১৬। $6x^2 + x - 2$ কে 2x - 1 দারা ভাগ কর।

সমাধান: এখানে ভাজ্য ও ভাজক উভয়েই χ এর ঘাতের অধ্যক্রম অনুসারে সাজানো আছে।

$$2x-1) 6x^{2} + x - 2 (3x + 2)$$

$$6x^{2} - 3x$$

$$(-) (+)$$

$$4x - 2$$

$$-4x - 2$$

$$(-) (+)$$

এখানে,
$$6x^2 \div 2x = 3x$$

এই 3x দ্বারা ভাজক 2x-1 কে গুণ করে গুণফল ভাজ্যের সদৃশ পদের নিচে লিখে বিয়োগ করা হল :

নতুন ভাজ্য 4x-2 এর ক্ষেত্রে একই নিয়ম অনুসরণ করা হল

নির্ণেয় ভাগফল 3x + 2

উদাহরণ ১৭। $2x^2 - 7xy + 6y^2$ কে x - 2y দারা ভাগ কর।

সমাধান : এখানে রাশি দুইটি χ এর ঘাতের অধঃক্রম অনুসারে সাজানো আছে।

9 নির্ণেয় ভাগফল 2x-3y

৬২

উদাহরণ ১৮। $16x^4 + 36x^2 + 81$ কে $4x^2 - 6x + 9$ দ্বারা ভাগ কর। সমাধান: এখানে রাশি দুটি x এর ঘাতের অধঃক্রম অনুসারে সাজানো আছে।

নির্ণেয় ভাগফল $4x^2 + 6x + 9$

মন্তব্য : ২য় ধাপে নতুন ভাজ্যকেও 🗴 এর ঘাতের অধঃক্রম অনুসারে সাজিয়ে লেখা হয়েছে।

উদাহরণ ১৯ ।
$$2x^4 + 110 - 48x$$
 কে $4x + 11 + x^2$ দ্বারা ভাগ কর।

সমাধান: ভাজ্য ও ভাজক উভয়কে 🗴 এর ঘাতের অধঃক্রম অনুসারে সাজিয়ে পাই,

ভাজ্য =
$$2x^4 + 110 - 48x = 2x^4 - 48x + 110$$
ভাজ্য = $4x + 11 + x^2 = x^2 + 4x + 11$
এখন, $x^2 + 4x + 11$) $2x^4 - 48x + 110$ ($2x^2 - 8x + 10$)
$$2x^4 + 8x^3 + 22x^2$$

$$-8x^3 - 22x^2 - 48x + 110$$

$$-8x^3 - 32x^2 - 88x$$

$$10x^2 + 40x + 110$$

$$10x^2 + 40x + 110$$

নির্ণেয় ভাগফল $2x^2 - 8x + 10$

বীজগণিতীয় রাশির গুণ ও ভাগ

30

উদাহরণ ২০। x^4-1 কে x^2+1 দারা ভাগ কর।

সমাধান : এখানে রাশি দুটি χ এর ঘাতের অধঃক্রম অনুসারে সাজানো আছে।

$$x^2+1$$
) x^4-1 (x^2-1) $\frac{x^4+x^2}{-x^2-1}$ $\frac{-x^2-1}{0}$ নির্ণেয় ভাগফল x^2-1

কাজ : ১।
$$2m^2-5mn+2n^2$$
 কে $2m-n$ দ্বারা ভাগ কর। ২। $a^4+a^2b^2+b^4$ কে a^2-ab+b^2 দ্বারা ভাগ কর। ৩। $81p^4+q^4-22\,p^2q^2$ কে $9p^2+2pq-q^2$ দ্বারা ভাগ কর।

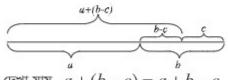
অনুশীলনী ৪.২

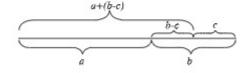
প্রথম রাশিকে দ্বিতীয় রাশি দ্বারা ভাগ কর:

	21	$45a^4$, $9a^2$	21	$-24a^5$, $3a^2$
	७।	$30a^4x^3$, $-6a^2x$	8	$-28x^4y^3z^2$, $4xy^2z$
	@1	$-36a^3z^3y^2$, $-4ayz$	७।	$-22x^3y^2z, -2xyz$
	91	$3a^3b^2-2a^2b^3$, a^2b^2	b 1	$36x^4y^3 + 9x^5y^2$, $9xy$
	91	$a^3b^4 - 3a^7b^7, -a^3b^3$	101	$6a^5b^3 - 9a^3b^4$, $3a^2b^2$
	221	$15x^3y^3 + 12x^3y^2 - 12x^5y^3$, $3x^2y^2$	751	$6x^8y^6z - 4x^4y^3z^2 + 2x^2y^2z^2$, $2x^2y^2z^2$
	201	$24a^2b^2c - 15a^4b^4c^4 - 9a^2b^6c^2, -3ab^2$	78	$a^3b^2 + 2a^2b^3$, $a + 2b$
	136	$6x^2 + x - 2$, $2x - 1$	191	$6y^2 + 3x^2 - 11xy$, $3x - 2y$
	191	$x^3 + y^3, x + y$	361	$a^2 + 4axyz + 4x^2y^2z^2$, $a + 2xyz$
	166	$16p^4 - 81q^4$, $2p + 3q$	२०।	$64-a^3$, $a-4$
	571	$x^2 - 8xy + 16y^2$, $x - 4y$	221	$x^4 + 8x^2 + 15$, $x^2 + 5$
	२७।	$x^4 + x^2 + 1$, $x^2 - x + 1$	२8 ।	$4a^4 + b^4 - 5a^2b^2$, $4a^2 - b^2$
	201	$2a^2b^2 + 5abd + 3d^2$, $ab + d$	२७।	$x^4y^4 - 1$, $x^2y^2 + 1$
	२१।	$1-x^6$, $1-x+x^2$	२४।	$x^2 - 8abx + 15a^2b^2$, $x - 3ab$
	२५।	$x^3y - 2x^2y^2 + axy$, $x^2 - 2xy + a$	७०।	$a^2bc+b^2ca+c^2ab$, $a+b+c$
	७३।	$a^2x - 4ax + 3ax^2$, $a + 3x - 4$	७२।	$81x^4 + y^4 - 22x^2y^2$, $9x^2 + 2xy - y^2$
30	७७।	$12a^4 + 11a^2 + 2$, $3a^2 + 2$	७8 ।	$x^4 + x^2y^2 + y^4$, $x^2 - xy + y^2$
8	961	$a^5 + 11a - 12$, $a^2 - 2a + 3$		
3000	৩৫।	$a^5 + 11a - 12$, $a^2 - 2a + 3$		

৬৪

৪-১১ বন্ধনীর ব্যবহার

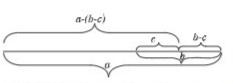

একটি স্কুলের ম্যানেজিং কমিটি তাদের স্কুলের 10 জন গরীব শিক্ষার্থীর জন্য দুঃস্থ কল্যাণ তহবিল থেকে a টাকা বরাদ্দ করল। সেই টাকা থেকে প্রত্যেক শিক্ষার্থীকে প্রতিটি b টাকা মূল্যের 2 টি করে খাতা ও প্রতিটি c টাকা মূল্যের 1টি করে কলম বিতরণ করা হলো। এতে কিছু টাকা উদ্বূত্ত হলো। এই টাকার সাথে আরও a টাকা যোগ করে তা a জন প্রতিবন্ধী শিক্ষার্থীর মধ্যে সমানভাবে ভাগ করে দেওয়া হলো। উপরে বর্ণিত তথ্যগুলোকে বীজগণিতীয় রাশির মাধ্যমে প্রকাশ করতে পারি :


$$[{a-(2b+c)\times10}+d]\div2$$

এখানে, ১ম বন্ধনী (), ২য় বন্ধনী { }, ৩য় বন্ধনী [] ব্যবহার করা হয়েছে। বন্ধনী স্থাপনের নিয়ম হচ্ছে [{()}]। এ ছাড়াও রাশিটিতে প্রক্রিয়া চিহ্ন +, —, × ও ÷ ব্যবহার করা হয়েছে। এরূপ রাশির সরলীকরণে 'BEDMAS' (B for Braket, E for Exponent, D for Division, M for Multiplication, A for Addition, S for Subtraction) অনুসরণ করা হয়। আবার, বন্ধনীর ক্ষেত্রে পর্যায়ক্রমে ১ম, ২য় ও ৩য় বন্ধনীর কাজ করতে হয়।

বন্ধনী অপসারণ:

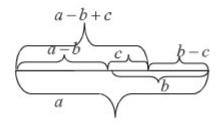
লক্ষ করি : b > c



চিত্রে দেখা যায়, a + (b - c) = a + b - c

বন্ধনীর আগে '+' চিহ্ন থাকলে, বন্ধনী অপসারণে বন্ধনীর ভিতরের পদগুলোর চিহ্নের পরিবর্তন হয় না।

আবার, লক্ষ করি : b > c, a > b - c



চিত্রে দেখা যায়, a - (b - c) = a - b + c

লক্ষ করি :
$$a - (b - c) + (b - c) = a$$

আবার,
$$a-b+c+(b-c)=a$$

সুতরাং,
$$a - (b - c) = a - b + c$$

[-(b-c) এর যোগাত্মক বিপরীত (b-c)]

বন্ধনীর আগে '—' চিহ্ন থাকলে, বন্ধনী অপসারণে বন্ধনীর ভিতরের পদগুলোর চিহ্নের পরিবর্তন হয়ে বিপরীত চিহ্নযুক্ত হয়।

বন্ধনীযুক্ত রাশি	বন্ধনীমুক্ত রাশি
+(6-2)	
-(6-2)	8-6+2
p+q+(r-s)	
p+q-(r-s)	

রাশি	বন্ধনীর আগের চিহ্ন	বন্ধনীর অবস্থান	বন্ধনীযুক্ত রাশি
7+5-2	+	২য় ও ৩য় পদ ১ম বন্ধনীভূক্ত অর্থাৎ , (5 – 2)	7 + (5 – 2)
7-5+2	-	২য় ও ৩য় পদ ১ম বন্ধনীভুক্ত অর্থাৎ (- 5 + 2)	7 - (5 - 2)
a-b+c-d	+	৩য় ও ৪র্থ পদ ১ম বন্ধনীভূক্ত	
a-b-c-d	_	35 37	

উদাহরণ ২১। সরল কর :
$$6-2\{5-(8-3)+(5+2)\}$$

সমাধান :
$$6 - 2\{5 - (8 - 3) + (5 + 2)\}$$

= $6 - 2\{5 - 5 + 7\}$
= $6 - 2\{+7\}$
= $6 - 14$
= -8

উদাহরণ ২২। সরল কর : $a + \{b - (c - d)\}$

সমাধান:
$$a + \{b - (c - d)\}$$

= $a + \{b - c + d\}$
= $a + b - c + d$

উদাহরণ ২৩। সরল কর :
$$a-[b-\{c-(d-e)\}-f]$$

সমাধান : $a-[b-\{c-(d-e)\}-f]$

$$= a - [b - \{c - d + e\} - f]$$

= $a - [b - c + d - e - f]$
= $a - b + c - d + e + f$

ফর্মা নং-৯, গণিত-৭ম শ্রেণি

উদাহরণ ২৪। সরল কর: $3x - [5y - \{10z - (5x - 10y + 3z)\}]$

সমাধান: $3x - [5y - \{10z - (5x - 10y + 3z)\}]$

$$=3x-[5y-\{10z-5x+10y-3z\}]$$

$$=3x-[5y-\{7z-5x+10y\}]$$

$$=3x-[5y-7z+5x-10y]$$

$$=3x-[5x-5y-7z]$$

$$=3x-5x+5y+7z$$

$$=-2x+5y+7z$$

$$=5y-2x+7z$$

উদাহরণ ২৫। 3x-4y-8z+5 এর তৃতীয় ও চতুর্থ পদ বন্ধনীর আগে (—) চিহ্ন দিয়ে প্রথম বন্ধনীভুক্ত কর। পরবর্তীতে দ্বিতীয় পদ ও প্রথম বন্ধনীভুক্ত রাশিকে দ্বিতীয় বন্ধনীভুক্ত কর যেন বন্ধনীর আগে (–) চিহ্ন থাকে।

সমাধান : 3x-4y-8z+5 রাশিটির তৃতীয় ও চতুর্থ পদ যথাক্রমে 8z ও 5

প্রশানুসারে, 3x-4y-(8z-5)

আবার, $3x - \{4y + (8z - 5)\}$

কাজ : সরল কর :

$$3 + x - \{2x - (3y - 4x + 2y)\}$$

$$2 | 8x + y - [7x - (5x - (4x - 3x - y) + 2y)]$$

অনুশীলনী ৪-৩

- ১। $3a^2b$ এবং $-4ab^2$ এর গুণফল নিচের কোনটি?

- (\mathfrak{P}) $-12a^2b^2$ (\mathfrak{P}) $-12a^3b^2$ (\mathfrak{P}) $-12a^2b^3$ (\mathfrak{P}) $-12a^3b^3$
- ২। $20a^6b^3$ কে $4a^3b$ দ্বারা ভাগ করলে ভাগফল নিচের কোনটি?
- (\Rightarrow) $5a^3b$ (\Rightarrow) $5a^6b^2$ (\Rightarrow) $5a^3b^2$ (\Rightarrow) $5a^3b^3$

- $\circ \vdash \frac{-25x^3y}{5xv^3} = \overline{} = \overline{}$
- $(\overline{\phi}) 5x^2y^2$ $(\overline{\psi}) 5x^3y^2$ $(\overline{\eta}) \frac{-5x^2}{v^3}$ $(\overline{\eta}) \frac{-5x^2}{v^2}$
- 8। a=3,b=2 হলে, (8a-2b)+(-7a+4b) এর মান কত?

 - (ক) 3
- (গ) 7
- (ঘ) 15

১৩। $a^5 \times (-a^3) \times a^{-5} = \overline{\Phi}$ ত?

১8 ৷ [2−{(1+1)−2}] এর সরলফল কত?

4191.11	TOTA AT	113 01 0 011						*		
Œ١		−1 হল, x³ + −4						(ঘ) 2		
								() =		
७।	$10x^6y^5z^4$ কে $-5x^2y^2z^2$ দ্বারা ভাগ করলে ভাগফল কত হবে?									
	(ক) -	$-2x^4y^2z^3$	(判)	$-2x^4y^3z^2$	(5	$-2x^3y^3z$.3	$(\overline{4}) - 2x^4y^3z^3$		
٩١	4a4	$-6a^3 + 3a$	+14	একটি বীজগণি	তীয় র	াশি।				
	(i) ব	হুপদী রাশিটির চ	লক a							
	(ii) $\stackrel{?}{\sim}$	(ii) বহুপদীটির মাত্রা 4								
	(iii)	a^3 এর সহগ	6							
	নিচের	কোনটি সঠিক?								
	(क) i	e ii	(킥) i	ii ଓ iii	(5	i) i ଓ iii		(ঘ) i, ii ও iii		
br I	x = 3	y=2 হল (n	n ^x) ^y	গুর মান কত?						
	$(\overline{\Phi})$	m^2	(খ)	m^3	(n)	m^5	(ঘ)	ni^6		
৯।	$a \neq 0$	হলে, a° এর ম	ান কত	?						
	(₹)	0	(খ)	a	(গ)	I	(ঘ)	$\frac{1}{a}$		
104	$x^7 + x$	x ^{−2} = কত?								
	(a)	x^9	(খ)	x^5	(গ)	x^{-5}	(ঘ)	χ^{-9}		
		হথ্যের আলোকে : দগণিতীয় রাশি <i>x</i>				}				
771	দ্বিতীয় ব	রাশির মান নিচের	কোনটি	?						
	(क)	x + y	(খ)	-x-y	(%)	x - y	(\bar{\bar{\pi}}	$x^2 - y^2$		
121	রাশি দুর্	টির গুণফল নিচের	কোনা	?						
	(季)	$x^{2} + y^{2}$	(খ)	$(x+y)^2$	(গ)	x - y	(ঘ)	$x^2 - y^2$		

 (\overline{q}) a^{ij} (\overline{q}) a^{δ} (\overline{q}) a^{δ} (\overline{q}) $-a^{\delta}$

(ক) -4 খে) 2 গে) 4 খে) 0

সরল কর (১৫ থেকে ২৯):

$$30 \cdot 7 + 2[-8 - \{-3 - (-2 - 3)\} - 4]$$

$$36 + -5 - [-8 - \{-4 - (-2 - 3)\} + 13]$$

$$9 + 7 - 2[-6 + 3\{-5 + 2(4 - 3)\}]$$

$$3b + x - \{a + (v - b)\}\$$

$$3x + (4y - z) - \{a - b - (2c - 4a) - 5a\}$$

$$0 - a + [-5b - \{-9c + (-3a - 7b + 11c)\}]$$

$$23 + -a - [-3b - \{-2a - (-a - 4b)\}]$$

$$\{2a - (3b - 5c)\} - [a - \{2b - (c - 4a)\} - 7c]$$

$$\{0 \mid -a + [-6b - \{-15c + (-3a - 9b - 13c)\}]\}$$

$$81 - 2x - [-4y - \{-6z - (8x - 10y + 12z)\}]$$

$$\{x \in [3x-5y+[2+(3y-x)+\{2x-(x-2y)\}]\}$$

$$4x + [-5y - \{9z + (3x - 7y + x)\}]$$

$$91 \ 20 - [\{(6a + 3b) - (5a - 2b)\} + 6]$$

$$4b + 15a + 2[3b + 3\{2a - 2(2a + b)\}]$$

$$8b - 3(2a - 3(2b + 5) - 5(b - 3)) - 3b$$

 \circ ০ বন্ধনীর পূর্বে (-) চিহ্ন দিয়ে a-b+c-d এর ২য়, ৩য় ও ৪র্থ পদ প্রথম বন্ধনীর ভিতর স্থাপন কর।

৩১। a-b-c+d-m+n-x+y রাশিতে বন্ধনীর আগে (-) চিহ্ন দিয়ে ২য়, ৩য় ও ৪র্থ পদ ও (+) চিহ্ন দিয়ে ৬ষ্ঠ ও ৭ম পদ প্রথম বন্ধনীভূক্ত কর।

৩২। 7x - 5y + 8z - 9 এর তৃতীয় ও চতুর্থ পদ বন্ধনীর আগে (-) চিহ্ন দিয়ে প্রথম বন্ধনীভূক্ত কর। পরে দ্বিতীয় পদ ও প্রথম বন্ধনীভূক্ত রাশিকে দ্বিতীয় বন্ধনীভূক্ত কর যেন বন্ধনীর আগে (+) চিহ্ন থাকে।

৩৩।
$$15x^2 + 7x - 2$$
 এবং $5x - 1$ দুটি বীজগণিতীয় রাশি।

- ক. প্রথম রাশি থেকে দ্বিতীয় রাশি বিয়োগ কর।
- রাশিদ্বয়ের গুণফল নির্ণয় কর।
- গ্রপ্রথম রাশিকে দ্বিতীয় রাশি দ্বারা ভাগ কর।

৩৪ ।
$$A = x^2 - xy + y^2$$
, $B = x^2 + xy + y^2$ এবং $C = x^4 + x^2y^2 + y^4$

খ) A ও B এর গুণফল নির্ণয় কর।

গ)
$$BC \div B^2 - A$$
 নির্ণয় কর।

পঞ্চম অধ্যায়

বীজগণিতীয় সূত্রাবলি ও প্রয়োগ

বীজগণিতীয় প্রতীক দ্বারা প্রকাশিত যেকোনো সাধারণ নিয়ম বা সিদ্ধান্তকে বীজগণিতীয় সূত্র বা সংক্ষেপে সূত্র বলা হয়। আমরা বিভিন্ন ক্ষেত্রে সূত্র ব্যবহার করে থাকি। এ অধ্যায়ে প্রথম চারটি সূত্র এবং এ চারটি সূত্রের সাহায্যে অনুসিদ্ধান্ত নির্ণয়ের পদ্ধতি দেখানো হয়েছে। এ ছাড়া বীজগণিতীয় সূত্র ও অনুসিদ্ধান্ত প্রয়োগ করে বীজগণিতীয় রাশির মান নির্ণয় ও উৎপাদকে বিশ্লেষণ উপস্থাপন করা হয়েছে। আবার বীজগণিতীয় রাশির সাহায্যে ভাজ্য, ভাজক, গুণনীয়ক, গুণিতক সম্পর্কে ধারণা দেওয়া হয়েছে এবং কীভাবে অনুষ্ঠি তিনটি বীজগণিতীয় রাশির গসোগ্ত. ও ল.সা.গু. নির্ণয় করা যায় তা আলোচনা করা হয়েছে।

অধ্যায় শেষে শিক্ষার্থীরা -

- বর্গ নির্ণয়ে বীজগণিতীয় সূত্রের বর্ণনা ও প্রয়োগ করতে পারবে।
- বীজগণিতীয় সূত্র ও অনুসিদ্ধান্ত প্রয়োগ করে রাশির মান নির্ণয় করতে পারবে।
- বীজগণিতীয় সূত্র প্রয়োগ করে উৎপাদকে বিশ্লেষণ করতে পারবে ।
- গুণনীয়ক ও গুণিতক কী তা ব্যাখ্যা করতে পারবে।
- অনুর্ধ্ব তিনটি বীজগণিতীয় রাশির সাংখ্যিক সহগসহ গ.সা.গু. ও ল.সা.গু. নির্ণয় করতে পারবে।

৫.১ বীজগণিতীয় সূত্রাবলি

সুত্র ১ ৷
$$(a+b)^2 = a^2 + 2ab + b^2$$

প্রমাণ:
$$(a+b)^2$$
 এর অর্থ $(a+b)$ কে $(a+b)$ দ্বারা গুণ।

$$\therefore (a+b)^2 = (a+b)(a+b)$$
 $= a(a+b) + b(a+b)$ [বহুপদী রাশিকে বহুপদী রাশি দ্বারা গুণ]
 $= a^2 + ab + ba + b^2$
 $= a^2 + ab + ab + b^2$

$$\therefore (a+b)^2 = a^2 + 2ab + b^2$$

দুটি রাশির যোগফলের বর্গ = ১ম রাশির বর্গ + ২ imes ১ম রাশি imes ২য় রাশি + ২য় রাশির বর্গ

৭০

সূত্রটির জ্যামিতিক ব্যাখ্যা

ABCD একটি বর্গক্ষেত্র যার

$$AB$$
 বাহু $= a + b$

$$BC$$
 বাহু $= a + b$

বর্গক্ষেত্রটিকে P,Q,R,S চারটি ভাগে ভাগ করা হয়েছে।

এখানে P ও S বর্গক্ষেত্র এবং O ও R আয়তক্ষেত্র।

আমরা জানি, বর্গক্ষেত্রের ক্ষেত্রফল = (দৈর্ঘ্য) ২ এবং আয়তক্ষেত্রের ক্ষেত্রফল = দৈর্ঘ্য × প্রস্থ

অতএব,
$$P$$
 এর ক্ষেত্রফল $= a \times a = a^2$
 Q এর ক্ষেত্রফল $= a \times b = ab$
 R এর ক্ষেত্রফল $= a \times b = ab$

$$S$$
 এর ক্ষেত্রফল $= b \times b = b^2$

এখন, ABCD বর্গক্ষেত্রের ক্ষেত্রফল = (P+Q+R+S) এর ক্ষেত্রফল

$$(a+b)^{2} = a^{2} + ab + ab + b^{2}$$
$$= a^{2} + 2ab + b^{2}$$

$$(a+b)^2 = a^2 + 2ab + b^2$$

অনুসিদ্ধান্ত ১।
$$a^2 + b^2 = (a+b)^2 - 2ab$$

আমরা জানি,
$$(a+b)^2 = a^2 + 2ab + b^2$$

বা, $(a+b)^2 - 2ab = a^2 + 2ab + b^2 - 2ab$

$$a^2 + b^2 = (a+b)^2 - 2ab$$

উদাহরণ ১। (m+n) এর বর্গ নির্ণয় কর। সমাধান : (m+n) এর বর্গ = $(m+n)^2$ = $(m)^2 + 2 \times m \times n + (n)^2$ = $m^2 + 2mn + n^2$

[উভয়পক্ষ থেকে 2ab বিয়োগ করে]

উদাহরণ ২। (3x+4) এর বর্গ নির্ণয় কর। সমাধান : (3x+4) এর বর্গ = $(3x+4)^2$ = $(3x)^2 + 2 \times 3x \times 4 + (4)^2$ = $9x^2 + 24x + 16$

উদাহরণ ৩।
$$(2x+3y)$$
 এর বর্গ নির্ণয় কর।
সমাধান : $(2x+3y)$ এর বর্গ = $(2x+3y)^2$
= $(2x)^2 + 2 \times 2x \times 3y + (3y)^2$
= $4x^2 + 12xy + 9y^2$

উদাহরণ ৪। বর্গের সূত্র প্রয়োগ করে 105 এর বর্গ নির্ণয় কর।

সমাধান :
$$(105)^2 = (100 + 5)^2$$

= $(100)^2 + 2 \times 100 \times 5 + (5)^2$
= $10000 + 1000 + 25$
= 11025

$$31x+2y$$

$$\approx 13a + 5b$$

$$015 + 2a$$

@1103

সূত্র ২।
$$(a-b)^2 = a^2 - 2ab + b^2$$

প্রমাণ:
$$(a-b)^2$$
 এর অর্থ $(a-b)$ কে $(a-b)$ দ্বারা গুণ।

$$\therefore (a-b)^2 = (a-b)(a-b)$$

$$= a(a-b) - b(a-b)$$

$$= a^2 - ab - ba + b^2$$

$$= a^2 - ab - ab + b^2$$

$$\therefore (a-b)^2 = a^2 - 2ab + b^2$$

দুটি রাশির বিয়োগফলের বর্গ = ১ম রাশির বর্গ - ২ imes ১ম রাশি imes ২য় রাশি + ২য় রাশির বর্গ

লক্ষ করি: দিতীয় সূত্রটি প্রথম সূত্রের সাহায্যেও নির্ণয় করা যায়।

আমরা জানি,
$$(a+b)^2 = a^2 + 2ab + b^2$$

এখন $(a-b)^2 = \{(a+(-b))^2 = a^2 + 2 \times a \times (-b) + (-b)^2 \ [b]$ এর পরিবর্তে $-b$ বসিয়ে]
 $= a^2 - 2ab + b^2$

অনুসিদ্ধান্ত ২।
$$a^2 + b^2 = (a - b)^2 + 2ab$$

আমরা জানি,
$$(a-b)^2 = a^2 - 2ab + b^2$$

$$\overline{a}$$
, $(a-b)^2 + 2ab = a^2 - 2ab + b^2 + 2ab$

[উভয়পক্ষে 2ab যোগ করে]

$$\therefore a^2 + b^2 = (a - b)^2 + 2ab$$

৭২

উদাহরণ ৫।
$$p-q$$
 এর বর্গ নির্ণয় কর।

সমাধান : $(p+q)$ এর বর্গ = $(p-q)^2$
 $= (p)^2 - 2 \times p \times q + (q)^2$
 $= p^2 - 2pq + q^2$

উদাহরণ ৬। $(5x-3y)$ এর বর্গ নির্ণয় কর।

সমাধান : $(5x+3y)$ এর বর্গ = $(5x-3y)^2$
 $= (5x)^2 - 2 \times 5x \times 3y + (3y)^2$
 $= 25x^2 - 30xy + 9y^2$

উদাহরণ ৭। বর্গের সূত্র প্রয়োগ করে 98 এর বর্গ নির্ণয় কর।

সমাধান :
$$(98)^2 = (100-2)^2$$

= $(100)^2 - 2 \times 100 \times 2 + (2)^2$
= $10000 - 400 + 4$
= 9604

কাজ: সূত্রের সাহায্যে রাশিগুলোর বর্গ নির্ণয় কর। ১। 5x – 3 ২। ax – by ৩। 5x – 6 8। 95

প্রথম ও দ্বিতীয় সূত্রের আরও কয়েকটি অনুসিদ্ধান্ত:

অনুসিদ্ধান্ত ৩।
$$(a+b)^2 = a^2 + 2ab + b^2$$

 $= a^2 + b^2 - 2ab + 4ab$
 $= a^2 - 2ab + b^2 + 4ab$
 $= (a-b)^2 + 4ab$ [:: $+2ab = -2ab + 4ab$]

$$\therefore (a+b)^2 = (a-b)^2 + 4ab$$

অনুসিদ্ধান্ত 8 ।
$$(a-b)^2 = a^2 - 2ab + b^2$$

 $= a^2 + b^2 + 2ab - 4ab$ [:: $-2ab = +2ab - 4ab$]
 $= a^2 + 2ab + b^2 - 4ab$
 $= (a-b)^2 - 4ab$

$$\therefore (a-b)^2 = (a+b)^2 - 4ab$$

অনুসিদ্ধান্ত হে।
$$(a+b)^2+(a-b)^2=(a^2+2ab+b^2)+(a^2-2ab+b^2)$$

$$=a^2+2ab+b^2+a^2-2ab+b^2$$

$$=2a^2+2b^2$$

$$=2(a^2+b^2)$$

$$(a+b)^2 + (a-b)^2 = 2(a^2+b^2)$$
অনুসিদ্ধান্ত ৬। $(a+b)^2 - (a-b)^2 = (a^2+2ab+b^2) - (a^2-2ab+b^2)$

$$= a^2 + 2ab + b^2 - a^2 + 2ab - b^2$$

$$= 4ab$$

$$(a+b)^2 - (a-b)^2 = 4ab$$

উদাহরণ ৮।
$$a+b=7$$
 এবং $ab=9$ হলে, a^2+b^2 এর মান নির্ণয় কর। সমাধান :

আমরা জানি,
$$a^2 + b^2 = (a+b)^2 - 2ab$$

= $(7)^2 - 2 \times 9$
= $49 - 18$
= 31

উদাহরণ ৯।
$$a+b=5$$
 এবং $ab=6$ হলে, $(a-b)^2$ এর মান নির্ণয় কর। সমাধান:

আমরা জানি,
$$(a-b)^2 = (a+b)^2 - 4ab$$

= $(5)^2 - 4 \times 6$
= $25 - 24$
= 1

উদাহরণ ১০।
$$p-\frac{1}{p}=8$$
 হলে, প্রমাণ কর যে, $p^2+\frac{1}{p^2}=66$ সমাধান : $p^2+\frac{1}{p^2}=\left(p-\frac{1}{p}\right)^2+2\times p\times \frac{1}{p}$ $\left[\because a^2+b^2=(a-b)^2+2ab\right]$
$$=(8)^2+2$$

$$=64+2$$

$$=66 \quad (প্রমাণিত)$$

বিকল্প পদ্ধতি:

দেওয়া আছে ,
$$p-\frac{1}{p}=8$$

$$\therefore \left(p-\frac{1}{p}\right)^2 = (8)^2 \quad [উভয়পক্ষকে বৰ্গ করে]$$
 বা, $p^2-2\times p\times \frac{1}{p}+\left(\frac{1}{p}\right)^2 = 64$ বা, $p^2-2+\frac{1}{p^2}=64$ বা, $p^2+\frac{1}{p^2}=64+2$
$$\therefore p^2+\frac{1}{p^2}=66 \ (প্রমাণিত)$$

কাজ : ১।
$$a+b=4$$
 এবং $ab=2$ হলে, $(a-b)^2$ এর মান নির্ণয় কর। ২। $a-\frac{1}{a}=5$ হলে, দেখাও যে, $a^2+\frac{1}{a^2}=27$

ফর্মা নং-১০, গণিত-৭ম শ্রেণি

৭৪

কাজ : ১। a+b+c এর বর্গ নির্ণয় কর, যেখানে (b+c)=m২। a+b+c এর বর্গ নির্ণয় কর, যেখানে (a+c)=n

উদাহরণ ১২। (x+y-z) এর বর্গ নির্ণয় কর। সমাধান : ধরি, x+y=m $\therefore (x+y-z)^2 = \{x+y\}-z\}^2$ $= (m-z)^2$ $= m^2 - 2mz + z^2$ $= (x+y)^2 - 2 \times (x+y) \times z + z^2 \qquad [m-এর মান বসিয়ে]$ $= x^2 + 2xy + y^2 - 2xz - 2yz + z^2$ $= x^2 + y^2 + z^2 + 2xy - 2xz - 2yz$

উদাহরণ ১৩। 3x - 2y + 5z এর বর্গ নির্ণয় কর।

সমাধান : 3x-2y+5z এর বর্গ $= \{(3x-2y)+5z\}^2$ $= (3x-2y)^2+2\times(3x-2y)\times5z+(5z)^2 \, [\because ১ম রাশি \, 3x-2y \, , \, হয় রাশি=5z \,]$ $= (3x)^2-2\times3x\times2y+(2y)^2+2\times5z(3x-2y)+25z^2$ $= 9x^2-12xy+4y^2+30xz-20yz+25z^2$ $= 9x^2+4y^2+25z^2-12xy+30xz-20yz$

উদাহরণ ১৪। সরল কর :
$$(2x+3y)^2-2(2x+3y)(2x-5y)+(2x-5y)^2$$

সমাধান : ধরি, $2x+3y=a$ এবং $2x-5y=b$
প্রদন্ত রাশি = $a^2-2ab+b^2$
= $(a-b)^2$
= $\{(2x+3y)-(2x-5y)\}^2$ [$a \in b$ এর মান বসিয়ে]
= $\{2x+3y-2x+5y\}^2$
= $(8y)^2$
= $64y^2$

উদাহরণ ১৫।
$$x=7$$
 এবং $y=6$ হলে, $16x^2-40xy+25y^2$ এর মান নির্ণয় কর। সমাধান : প্রদত্ত রাশি $=16x^2-40xy+25y^2$ $=(4x)^2-2\times 4x\times 5y+(5y)^2$ $=(4x-5y)^2$ $=(4\times 7-5\times 6)^2$ $[x ও y এর মান বসিয়ে]$ $=(28-30)^2$ $=(-2)^2$ $=(-2)\times(-2)$

কাজ :

১। 3x-2v-z এর বর্গ নির্ণয় কর।

২। সরল কর : $(5a-7b)^2+2(5a-7b)(9b-4a)+(9b-4a)^2$

৩ | x = 3 হলে, $9x^2 - 24x + 16$ এর মান কত?

অনুশীলনী ৫-১

সূত্রের সাহায্যে বর্গ নির্ণয় কর (১–১৬)।

$$3 \mid a+5$$

$$\ge 15x-7$$

$$9 + 3a - 11x$$

$$9 + 3a - 11xy$$
 $8 + 5a^2 + 9m^2$

$$9 + xy - 6y$$

$$9 + xy - 6y$$
 $\forall + ax - by$

$$30 + 2x + v - x$$

$$33 + 2a - b + 3c$$

$$3 + 97$$
 $30 + 2x + y - z$ $33 + 2a - b + 3c$ $32 + x^2 + y^2 - z^2$

$$50 \mid a-2b-a$$

$$38 + 3x - 2y + 7$$

$$bc + bc + ca + ab$$

$$30 + a - 2b - c$$
 $38 + 3x - 2y + z$ $3c + bc + ca + ab$ $36 + 2a^2 + 2b - c^2$

সরল কর (১৭-২৪)।

$$39 + (2a+1)^2 - 4a(2a+1) + 4a^2$$

৭৬

১৮।
$$(5a+3b)^2+2(5a+3b)(4a-3b)+(4a-3b)^2$$
১৯। $(7a+b)^2-2(7a+b)(7a-b)+(7a-b)^2$
২০। $(2x+3y)^2+2(2x+3y)(2x-3y)+(2x-3y)^2$
২১। $(5x-2)^2+(5x+7)^2-2(5x-2)(5x+7)$
২২। $(3ab-cd)^2+9(cd-ab)^2+6(3ab-cd)(cd-ab)$
২৩। $(2x+5y+3z)^2+(5y+3z-x)^2-2(5y+3z-x)(2x+5y+3z)$
২৪। $(2a-3b+4c)^2+(2a+3b-4c)^2+2(2a-3b+4c)(2a+3b-4c)$
মান নির্ণয় কর (২ a -২ b):
২৫। $25x^2+36y^2-60xy$, যখন $x=-4$, $y=-5$
২৬। $16a^2-24ab+9b^2$, যখন $a=7$, $b=6$
২৭। $9x^2+30x+25$, যখন $a=7$, $c=-67$
২৯। $a-b=7$ এবং $ab=3$ হলে, দেখাও যে, $(a+b)^2=61$
৩০। $a+b=5$ এবং $ab=12$ হলে, দেখাও যে, $(a+b)^2=61$
৩১। $x+\frac{1}{x}=5$ হলে, প্রমাণ কর যে, $\left(x^2-\frac{1}{x^2}\right)^2=525$
৩২। $a+b=8$ এবং $a-b=4$ হলে, $ab=5$ তে। $x+y=7$ এবং $xy=10$ হলে, x^2+y^2+5xy এর মান কত?
৩১। $x+y=7$ এবং $xy=10$ হলে, x^2+y^2+5xy এর মান কত?
৩৪। $x+y=7$ এবং $xy=10$ হলে, x^2+y^2+5xy এর মান কত?
৩৪। $x+y=7$ এবং $xy=10$ হলে, x^2+y^2+5xy এর মান কত?
তে। $x+y=7$ এবং $xy=10$ হলে, x^2+y^2+5xy এর মান কত?
তে। $x+y=7$ এবং $xy=10$ হলে, x^2+y^2+5xy এর মান কত?
তে। $x+y=7$ এবং $xy=10$ হলে, x^2+y^2+5xy এর মান কত?
তে। $x+y=7$ এবং $xy=10$ হলে, x^2+y^2+5xy এর মান কত?
তে। $x+y=7$ এবং $xy=10$ হলে, x^2+y^2+5xy এর মান কত?
তে। $x+y=1$ এবং $x=1$ এবং

উদাহরণ ১৭। সূত্রের সাহায্যে $ax^2 + b$ কে $ax^2 - b$ দ্বারা গুণ কর। সমাধান : $(ax^2 + b)(ax^2 - b)$

$$= (ax^{2})^{2} - (b)^{2}$$
$$= a^{2}x^{4} - b^{2}$$

উদাহরণ ১৮। সূত্রের সাহায্যে 3x+2y+1 কে 3x-2y+1 দ্বারা গুণ কর।

সমাধান:
$$(3x+2y+1)(3x-2y+1)$$

= $\{(3x+1)+2y\}\{(3x+1)-2y\}$
= $(3x+1)^2-(2y)^2$
= $9x^2+6x+1-4y^2$
= $9x^2-4y^2+6x+1$

দুটি রাশির যোগফল 🗴 এদের বিয়োগফল = রাশি দুটির বর্গের বিয়োগফল

সূত্র 8 :
$$(x+a)(x+b) = x^2 + (a+b)x + ab$$

প্রমাণ : $(x+a)(x+b) = (x+a)x + (x+a)b$
 $= x^2 + ax + bx + ab$
 $= x^2 + (a+b)x + ab$

অর্থাৎ, $(x+a)(x+b)=x^2+(a$ এবং b এর বীজগণিতীয় যোগফল) x+(a এবং b এর গুণফল)

উদাহরণ ১৯। a+3 কে a+2 দ্বারা গুণ কর।

সমাধান :
$$(a+3)(a+2)$$

= $a^2 + (3+2)a + 3 \times 2$
= $a^2 + 5a + 6$

উদাহরণ ২০। px + 3 কে px - 5দ্বারা গুণ কর।

সমাধান: (px + 3)(px - 5) $= (px)^2 + \{3 + (-5)\} px + 3 \times (-5)$ $= p^2 x^2 + (3 - 5) px - 15$ $= p^2 x^2 + (-2) px - 15$

 $= p^2 x^2 - 2 px - 15$

উদাহরণ ২১। p^2-2r কে p^2-3r দ্বারা গুণ কর। π মাধান : $(p^2-2r)(p^2-3r)$ $=(p^2)^2+(-2r-3r)p^2+(-2r)\times(-3r)$ $=p^4-5rp^2+6r^2$ $=p^4-5p^2r+6r^2$

উদাহরণ ২২। সূত্রের সাহায্যে গুণফল নির্ণয় কর: (2x+y), (2x-y), $(4x^2+y^2)$ সমাধান: (2x+y) (2x-y) $(4x^2+y^2)$ = $\{(2x)^2-y^2\}$ $\{4x^2+y^2\}$ = $(4x^2-y^2)$ $\{4x^2+y^2\}$ = $(4x^2)^2-(y^2)^2$ = $16x^4-y^4$

অনুশীলনী ৫-২

সূত্রের সাহায্যে গুণফল নির্ণয় কর:

৫.২ বীজগণিতীয় রাশির উৎপাদক

আমরা জানি, $6 = 2 \times 3$

এখানে, 2 ও 3 হলো 6 এর দুইটি উৎপাদক বা গুণনীয়ক।

৩ নং সূত্র থেকে আমরা জানি, $a^2 - b^2 = (a + b)(a - b)$

তাহলে, (a+b) ও (a-b) বীজগণিতীয় রাশি a^2-b^2 এর দুটি উৎপাদক বা গুণনীয়ক।

কোনো বীজগণিতীয় রাশি দুই বা ততোধিক রাশির গুণফল হলে, শেষোক্ত রাশিগুলোর প্রত্যেকটিকে প্রথম রাশির উৎপাদক বা গুণনীয়ক বলা হয়।

বীজগণিতীয় বিভিন্ন সূত্র এবং গুণের বিনিময়বিধি, সংযোগবিধি ও বন্টনবিধি ব্যবহার করে বীজগণিতীয় রাশিকে উৎপাদকে বিশ্রেষণ করা হয়।

গুণনের বন্টনবিধির সাহায্যে উৎপাদকে বিশ্লেষণ

উদাহরণ ২২। 20x + 4y কে উৎপাদকে বিশ্লেষণ কর।

সমাধান :
$$20x + 4y = 4 \times 5x + 4 \times y$$

= $4(5x + y)$ [গুণের বণ্টনবিধি অনুযায়ী]

উদাহরণ ২৩। ax-by+ax-by কে উৎপাদকে বিশ্লেষণ কর।

সমাধান :
$$ax - by + ax - by$$

$$= ax + ax - by - by$$

$$= 2ax - 2by$$

$$= 2(ax - by)$$
[গুণের বন্টনবিধি অনুযায়ী]

উদাহরণ ২৪। উৎপাদকে বিশ্লেষণ কর : $2x-6x^2$

সমাধান : $2x - 6x^2 = 2x(1-3x)$

উদাহরণ ২৫। উৎপাদকে বিশ্লেষণ কর : $x^2 + 4x + xy + 4y$

সমাধান :
$$x^2 + 4x + xy + 4y$$

= $x(x+4) + y(x+4)$ [গুনের বর্ণ্টনবিধি অনুযায়ী]
= $(x+4)(x+y)$

লক্ষ করি : দুটি রাশি এমনভাবে নির্বাচন করতে হবে যেন বণ্টনবিধি প্রয়োগ করে প্রাপ্ত রাশি দুটির মধ্যে একটি সাধারণ উৎপাদক পাওয়া যায়।

কাজ: উৎপাদকে বিশ্রেষণ কর।

$$3 + 28a + 7b$$
 $\approx 15y - 9y^2$ $9 + 5a^2b^4 - 9a^4b^2$
 $8 + 2a^2 + 3a + 2ab + 3b$ $6 + x^4 + 6x^2 + 4x^3 + 24x$

বীজগণিতীয় সত্রের সাহায্যে উৎপাদকে বিশ্লেষণ

উদাহরণ ২৬। উৎপাদকে বিশ্লেষণ কর : $25 - 9x^2$

সমাধান:
$$25-9x^2=(5)^2-(3x)^2=(5+3x)(5-3x)$$

উদাহরণ ২৭। $8x^4 - 2x^2a^2$ কে উৎপাদকে বিশ্লেষণ কর।

সমাধান :
$$8x^4 - 2x^2a^2 = 2x^2(4x^2 - a^2)$$
 [বণ্টনবিধি অনুযায়ী]
$$= 2x^2\{(2x)^2 - (a)^2\} = 2x^2(2x + a)(2x - a)$$

উদাহরণ ২৮। উৎপাদকে বিশ্লেষণ কর : $25(a+2b)^2-36(2a-5b)^2$

সমাধান : ধরি,
$$a + 2b = x$$
 এবং $2a - 5b = y$

$$=(5x)^2-(6y)^2$$

$$=(5x+6y)(5x-6y)$$

$$= \{5(a+2b)+6(2a-5b)\}\{5(a+2b)-6(2a-5b)\}$$
 [x ও y এর মান বসিয়ে]

$$= (5a+10b+12a-30b)(5a+10b-12a+30b)$$

$$=(17a-20b)(40b-7a)$$

৮০

উদাহরণ ২৯। উৎপাদকে বিশ্লেষণ কর : $x^2 + 5x + 6$

সমাধান :
$$x^2 + 5x + 6$$

= $x^2 + (2+3)x + 2 \times 3$
= $(x+2)(x+3)$ $\therefore (x+a)(x+b)$
= $x^2 + (a+b)x + ab$
এখানে, $a = 2$ এবং $b = 3$

উদাহরণ ৩০। উৎপাদকে বিশ্লেষণ কর : $4x^2 - 4xy + y^2 - z^2$

সমাধান:
$$4x^2 - 4xy + y^2 - z^2$$

$$= (2x)^2 - 2 \times 2x \times y + (y)^2 - z^2$$

$$= (2x - y)^2 - (z)^2$$

$$= (2x - y + z)(2x - y - z)$$

উদাহরণ ৩১। উৎপাদকে বিশ্লেষণ কর : $2bd - a^2 - c^2 + b^2 + d^2 + 2ac$

সমাধান :
$$2bd - a^2 - c^2 + b^2 + d^2 + 2ac$$

 $= b^2 + 2bd + d^2 - a^2 + 2ac - c^2$ [সাজিয়ে]
 $= (b^2 + 2bd + d^2) - (a^2 - 2ac + c^2)$
 $= (b + d)^2 - (a - c)^2$
 $= (b + d + a - c)(b + d - a + c)$
 $= (a + b - c + d)(b - a + c + d)$

কাজ: উৎপাদকে বিশ্লেষণ কর।

অনুশীলনী ৫-৩

উৎপাদকে বিশ্লেষণ কর।

$$33 + 2a^2 + 6a - 80$$

$$301 p^2 - 15p + 56$$

$$38 + 45a^8 - 5a^4x^4$$

$$3e + 3a - 40$$

$$36 + (x^2 + 1)^2 - (y^2 + 1)^2$$

$$39 + x^2 + 11x + 30$$

$$3b + a^2 - b^2 + 2bc - c^2$$

$$33 + 144x^7 - 25x^3a^4$$

$$90 + 4x^2 + 12xy + 9y^2 - 16a^2$$

েও ভাজ্য, ভাজক, গুণনীয়ক ও গুণিতক

$$x, y \in \mathbb{Z}$$

এখানে একটি ভাগ প্রক্রিয়া দেখানো হয়েছে। χ কে ভাগ করা হয়েছে, তাই χ ভাজ্য। আবার, γ দ্বারা ভাগ করা হয়েছে, ফলে y ভাজক এবং z হলো ভাগফল।

এক্ষেত্রে 10, 2 এর একটি গুণিতক। আবার 10, 5 এরও একটি গুণিতক। অপরদিকে 2 এবং 5 উভয় এর উৎপাদক।

একটি রাশি (ভাজ্য) অপর একটি রাশি (ভাজক) দ্বারা নিঃশেষে বিভাজ্য হলে, ভাজ্যকে ভাজকের একটি গুণিতক (multiple) বলা হয় এবং ভাজককে ভাজ্যের গুণনীয়ক বা উৎপাদক (factor) বলে।

৫-৪ গরিষ্ঠ সাধারণ গুণনীয়ক (গ.সা.গু.)

পাটিগণিত থেকে আমরা জেনেছি,

12 এর গুণনীয়কগুলো 1, (2), (3), 4, (6), 12

1, 2, 3, 6, 9, 18 18 " "

1, (2), (3), 4, (6), 8, 12, 24 24 " "

12,18 ও 24 এর সাধারণ গুণনীয়কগুলো 2, 3 ও 6 । এদের মধ্যে বড় গুণনীয়কটি 6 ।

∴ 12,18 ও 24 এর গ.সা.ও. 6

বীজগণিতে.

xyz এর গুণনীয়কগুলো যথাক্রমে (x), y, z

5x এর গুণনীয়কগুলো যথাক্রমে 5, x 3xp এর গুণনীয়কগুলো যথাক্রমে 3, x p

 $\therefore xyz$, 5x, 3xp রাশিগুলোর সাধারণ গুণনীয়ক x

∴ রাশিগুলোর গ.সা.গু. χ

ফর্মা নং-১১, গণিত-৭ম শ্রেণি

যে রাশি দুই বা ততোধিক রাশির প্রত্যেকটির গুণনীয়ক, ঐ রাশিকে প্রদন্ত রাশিগুলোর সাধারণ গুণনীয়ক বলা হয়।

দুই বা ততোধিক রাশির গরিষ্ঠ সাধারণ গুণনীয়ক (গ.সা.গু.) হলো এমন একটি রাশি যা সাধারণ গুণনীয়কগুলোর মধ্যে সবচেয়ে বড় মানের একটি রাশি এবং যা দ্বারা প্রদত্ত রাশিগুলো নিঃশেষে বিভাজ্য হয়।

গ,সা,গু, নির্ণয়ের নিয়ম

- পাটিগণিতের নিয়মে প্রদত্ত রাশিগুলোর সাংখ্যিক সহগের গ.সা.গু. নির্ণয় করতে হয়।
- বীজগণিতীয় রাশিগুলোর মৌলিক উৎপাদক বের করতে হয়।
- সাংখ্যিক সহগের গ.সা.গু. এবং প্রদত্ত রাশিগুলোর বীজগণিতীয় সাধারণ মৌলিক উৎপাদকগুলোর ধারাবাহিক গুণফল হচ্ছে নির্ণেয় গ.সা.গু.।

উদাহরণ ৩২। $8x^2yz^2$ এবং $10x^3y^2z^3$ এর গ.সা.গু. নির্ণয় কর।

সমাধান :
$$8x^2yz^2 = 2 \times 2 \times 2 \times x \times x \times y \times z \times z$$

 $10x^3y^2z^3 = 2 \times 5 \times x \times x \times x \times y \times y \times z \times z \times z$

সুতরাং, দেখা যাচ্ছে সাধারণ গুণনীয়কগুলো 2, x, x, y, z, z.

নির্ণেয় গ.সা.গু.
$$2 \times x \times x \times y \times z \times z = 2x^2yz^2$$

উদাহরণ ৩৩। $2(a^2-b^2)$ এবং $(a^2-2ab+b^2)$ এর গ.সা.গু. নির্ণয় কর।

সমাধান : ১ম রাশি =
$$2(a^2 - b^2) = 2(a+b)(a-b)$$

২য় রাশি = $a^2 - 2ab + b^2 = (a-b)(a-b)$

এখানে সাংখ্যিক সহগ 2 ও 1 এর গ.সা.গু. = 1.

এবং সাধারণ মৌলিক উৎপাদক বা গুণনীয়ক (a-b)

নির্ণেয় গ.সা.গু. $1 \times (a-b)$

$$=(a-b)$$

উদাহরণ ৩8। x^2-4 , 2x+4 এবং x^2+5x+6 এর গ.সা.গু. নির্ণয় কর।

সমাধান : ১ম রাশি =
$$x^2 - 4 = (x+2)(x-2)$$

২য় রাশি =
$$2x + 4 = 2(x + 2)$$

এখানে প্রদত্ত রাশিগুলোর সাংখ্যিক সহগ1,2 এবং 1 এর গ.সা.গু. =1 সাধারণ মৌলিক উৎপাদক =(x+2)

নির্ণেয় গ.সা.গু.
$$1 \times (x+2) = (x+2)$$

কাজ: গ্সা.গু. নির্ণয় কর:

$$3 + 3x^3y^2$$
, $2x^2y^3$

$$9 + 3xy$$
, $6x^2y$, $9xy^2$

$$0 \mid (x^2 - 25), (x - 5)^2$$

$$8 + x^2 - 9$$
, $x^2 + 7x + 12$, $3x + 9$

৫-৫ লঘিষ্ঠ সাধারণ গুণিতক (ল.সা.গু.)

পাটিগণিতে আমরা জানি,

4 এর গুণিতকগুলো হচ্ছে 4, 8, 12, 16, 20, 24, 28, 32, 36,

6, 12, 18, 24, 30, 36,

4 এবং 6 এর সাধারণ গুণিতক হচ্ছে 12, 24, 36,.....

4 এবং 6 এর লঘিষ্ঠ সাধারণ গুণিতক হচ্ছে 12.

দুই বা ততোধিক সংখ্যার ল.সা.গু. হচ্ছে এমন একটি সংখ্যা যা প্রদত্ত সংখ্যাগুলোর সাধারণ গুণিতকগুলোর মধ্যে সবচেয়ে ছোটো।

বীজগণিতীয় রাশির ক্ষেত্রে.

$$x^2y^2 \div x^2y = y$$

এবং $x^2y^2 \div xy^2 = x$

অর্থাৎ, x^2y ও xy^2 এর প্রত্যেকটি দ্বারা x^2y^2 নিঃশেষে বিভাজ্য।

সুতরাং, x^2y^2 হলো x^2y ও xy^2 এর একটি সাধারণ গুণিতক।

আবার,
$$x^2y = x \times x \times y$$

 $xv^2 = x \times y \times y$

এখানে রাশি দৃটিতে x আছে সর্বোচ্চ দুইবার এবং y আছে সর্বোচ্চ দুইবার।

়, ল,সা,গু. =
$$x \times x \times v \times v = x^2 v^2$$

মন্তব্য: ল.সা.গু. = সাধারণ উৎপাদক × সাধারণ নয় এরূপ উৎপাদক।

দুই বা ততোধিক রাশির সম্ভাব্য সকল উৎপাদকের সর্বোচ্চ ঘাতের গুণফলকে রাশিগুলোর লঘিষ্ঠ সাধারণ গুণিতক (ল.সা.গু.) বলা হয়।

ল.সা.গু. নির্ণয়ের নিয়ম

ল.সা.গু. নির্ণয় করার জন্য প্রথমে সাংখ্যিক সহগগুলোর ল.সা.গু. বের করতে হবে। এরপর উৎপাদকের সর্বোচ্চ ঘাত বের করতে হবে। অতঃপর উভয়ের গুণফলই হবে প্রদন্ত রাশিগুলোর ল.সা.গু.।

উদাহরণ ৩৫। $4x^2y^3z$, $6xy^3z^2$ এবং $8x^3yz^3$ এর ল.সা.গু. নির্ণয় কর।

সমাধান: রাশিগুলোর সাংখ্যিক সহগ 4,6 ও 8 এর ল.সা.গু. 24

প্রদত্ত রাশিগুলোর অন্তর্ভুক্ত সর্বোচ্চ ঘাতবিশিষ্ট উৎপাদকগুলো যথাক্রমে $\,x^3,\, y^3\,$ ও $z^3\,$

নির্ণেয় ল.সা.গু. $24x^3y^3z^3$

৮৪

উদাহরণ ৩৬।
$$a^2-b^2$$
 ও $a^2+2ab+b^2$ এর ল.সা.গু. নির্ণয় কর।

সমাধান: ১ম রাশি =
$$a^2 - b^2 = (a+b)(a-b)$$

২য় রাশি =
$$a^2 + 2ab + b^2 = (a+b)^2$$

প্রদত্ত রাশিগুলোর সম্ভাব্য সর্বোচ্চ ঘাতবিশিষ্ট উৎপাদকগুলো (a-b) ও $(a+b)^2$

নির্ণেয় ল,সা.গু. $(a-b)(a+b)^2$

উদাহরণ ৩৭। $2x^2y + 4xy^2$, $4x^3y - 16xy^3$ এবং $5x^2y^2(x^2 + 4xy + 4y^2)$ এর ল.সা.গু. নির্ণয় কর।

সমাধান : ১ম রাশি =
$$2x^2y + 4xy^2 = 2xy(x+2y)$$

২য় রাশি = $4x^3y - 16xy^3 = 4xy(x^2 - 4y^2) = 4xy(x+2y)(x-2y)$
৩য় রাশি = $5x^2y^2(x^2 + 4xy + 4y^2) = 5x^2y^2(x+2y)^2$

সাংখ্যিক সহগ 2, 4 ও 5 এর ল.সা.গু. 20

প্রদত্ত রাশিগুলোতে সম্ভাব্য সর্বোচ্চ ঘাতবিশিষ্ট উৎপাদকগুলো x^2 , y^2 , $(x+2y)^2$, (x-2y) নির্ণেয় ল.সা.গু. $20x^2y^2(x-2y)(x+2y)^2$

উদাহরণ ৩৮। x^3-3x^2-10x , x^3+6x^2+8x এবং $x^4-5x^3-14x^2$ তিনটি বীজগাণিতিক রাশি।

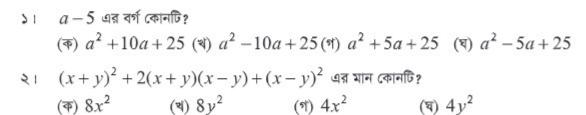
- ক) (3a+2b-c) এর বর্গ নির্ণয় কর।
- খ) ১ম ও ২য় রাশির গ,সা,ভ নির্ণয় কর।
- গ) রাশি তিনটির ল.সা.গু নির্ণয় কর।

সমাধান:

২য় রাশি
$$= x^{3} + 6x^{2} + 8x$$

$$= x(x^{2} + 6x + 8)$$

$$= x(x^{2} + 2x + 4x + 8)$$


$$= x\{x(x+2) + 4(x+2)\}$$

$$= x(x+2)(x+4)$$

গ) ১ম রাশি =
$$x(x+2)(x-5)$$
; [খ হতে প্রাপ্ত]
২য় রাশি = $x(x+2)(x+4)$; [খ হতে প্রাপ্ত]
৩য় রাশি = $x^4 - 5x^3 - 14x^2$
= $x^2(x^2 - 5x - 14)$
= $x^2(x^2 + 2x - 7x - 14)$
= $x^2\{x(x+2) - 7(x+2)\}$
= $x^2(x+2)(x-7)$

∴ নির্পেয় ল.সা.ভ = $x^2(x+2)(x+4)(x-5)(x-7)$

অনুশীলনী ৫-৪

- ৩। a+b=4 এবং a-b=2 হলে, ab এর মান কত? (ক) 3 (খ) 8 (গ) 12 (ঘ) 16
- ৪। একটি রাশি অপর একটি রাশি দ্বারা নিঃশেষে বিভাজ্য হলে, ভাজ্যকে ভাজকের কী বলা হয়?
 (ক) ভাগফল (খ) ভাগশেষ (গ) গুণিতক (ঘ) গুণনীয়ক
- $a, a^2, a(a+b)$ এর লঘিষ্ঠ সাধারণ গুণিতক কোনটি?
- (ক) a (খ) a^2 (গ) a(a+b) (ঘ) $a^2(a+b)$
- ৬। 2a ও 3b এর গ.সা.ও. কত? (ক) 1 (খ) 6 (গ) ab (ঘ) 6ab

a. b বাস্তব সংখ্যা হলে-

9 |
$$(i) (a+b)^2 = a^2 + 2ab + b^2$$

(ii)
$$4ab = (a+b)^2 + (a-b)^2$$

(iii)
$$a^2 - b^2 = (a+b)(a-b)$$

কোনটি সঠিক?

$$(x^3y-xy^3)$$
 ও $(x-y)(x+2y)$ দুইটি বীজগণিতীয় রাশি।

উপরের তথ্যের আলোকে ৮-১০নং প্রশ্নের উত্তর দাও।

৮। প্রথম রাশির উৎপাদকে বিশ্লেষিত রূপ নিচের কোনটি?

$$(\overline{\Phi})(x+y)(x-y)$$

$$(\forall) x(x+y)(x-y)$$

$$(\mathfrak{I})$$
 $y(x+y)(x-y)$

$$(\triangledown) xy(x+y)(x-y)$$

৯। বীজগণিতীয় রাশি দুটির গ,সা,ত, নিচের কোনটি?

$$(\Phi)(x+y)$$

$$(\forall) (x-y)$$

$$(\mathfrak{I})$$
 $y(x+y)$

$$(\nabla) x(x-y)$$

১০। বীজগণিতীয় রাশি দুটির ল.সা.গু. নিচের কোনটি?

$$(\overline{\Phi}) x(x+y)(x-y)$$

$$(\forall) \ y(x+y)(x-y)$$

(
5
) $xy(x^2 - y^2)(x + 2y)$

$$(\forall) xy(x+y)(x+2y)$$

১১। $9x^2 - 25y^2$ এবং 15ax - 25ay এর ল.সা.গু কত?

$$(\overline{\Phi})$$
 $(3x+5y)$

$$(\forall)$$
 $(3x-5y)$

(9)
$$(9x^2 - 25y^2)$$

$$(\triangledown)$$
 5a $(9x^2 - 25y^2)$

১২। $x^3 y^5$ ও $a^2 - b^2$ এর গ.সা.গু কত?

$$(\overline{\Phi})$$
 $\chi^3 \nu^5$

১৩।
$$x - \frac{1}{x} = 0$$
 হলে,

(i)
$$x=1$$

(ii)
$$x = -1$$

(iii)
$$x = \pm 1$$

নিচের কোনটি সঠিক?

১৪।
$$a + \frac{1}{a} = 4$$
 হলে $a^2 - 4a + 1$ এর মান কত?

১৫।
$$a+5$$
 এর বর্গ কোনটি?

(
$$^{\circ}$$
) $a^2 + 10a + 25$ ($^{\circ}$) $a^2 - 10a + 25$

(4)
$$a^2 - 10a + 25$$

(a)
$$a^2 + 5a + 25$$
 (b) $a^2 + 5a - 25$

$$(a)$$
 $a^2 + 5a - 25$

১৬।
$$a+b=8, a-b=4$$
 হলে $ab=$ কত?

গ,সা,গু, নির্ণয় কর (১৭ – ২৬)।

$$391 \ 3a^3b^2c, 6ab^2c^2$$

$$3b + 5ab^2x^2, 10a^2bv^2$$

$$3a^2x^2, 6axv^2, 9av^2$$

$$0 + 16a^3x^4y, 40a^2y^3x, 28ax^3$$

$$3 + a^2 + ab, a^2 - b^2$$

$$44 \cdot x^3y - xy^3, (x-y)^2$$

$$x^2 + 7x + 12$$
, $x^2 + 9x + 20$

$$x^2 + 7x + 12, x^2 + 9x + 20$$
 $x^3 - ab^2, a^4 + 2a^3b + a^2b^2$

$$80 + a^2 - 16, 3a + 12, a^2 + 5a + 4$$

$$86 + a^2 - 16, 3a + 12, a^2 + 5a + 4$$
 $86 + xy - y, x^3y - xy, x^2 - 2x + 1$

ল,সা,গু, নির্ণয় কর (২৭ -৩৬)।

$$3916a^3b^2c, 9a^4bd^2$$

$$8v + 5x^2v^2, 10xz^3, 15v^3z^4$$

$$2p^2xy^2, 3pq^2, 6pqx^2$$
 $00 + (b^2 - c^2), (b+c)^2$

$$90 + (b^2 - c^2), (b+c)^2$$

$$x^2 + 2x, x^2 + 3x + 2$$

$$9x^2 - 25y^2, 15ax - 25ay$$

$$x^2 - 3x - 10, x^2 - 10x + 25$$

$$x^2 - 3x - 10$$
, $x^2 - 10x + 25$ $x^2 - 7a + 12$, $x^2 + a - 20$, $x^2 + 2a - 15$

$$96 + x^2 - 8x + 15$$
, $x^2 - 25$, $x^2 + 2x - 15$ $99 + x + 5$, $x^2 + 5x$, $x^2 + 7x + 10$

$$001 x + 5, x^2 + 5x, x^2 + 7x + 10$$

৩৭।
$$a = 2x - 3$$
 এবং $b = 2x + 5$

(ক)
$$a + b$$
 এর মান নির্ণয় কর।

(খ) সূত্রের সাহায্যে
$$a^2$$
 এর মান নির্ণয় কর।

(গ) সুত্রের সাহায্যে
$$a$$
 ও b এর গুণফল নির্ণয় কর। $x=2$ হলে, $ab=$ কত?

৩৮। $x^4 - 625$ এবং $x^2 + 3x - 10$ দুটি বীজগণিতীয় রাশি।

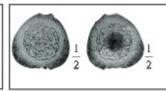
- (ক) দ্বিতীয় রাশিকে উৎপাদকে বিশ্লেষণ কর।
- (খ) রাশি দুটির গ.সা.গু নির্ণয় কর।
- (গ) রাশি দুটির ল,সা,গু, নির্ণয় কর।

৩৯। $x^2-3x-10$, x^3+6x^2+8x এবং $x^4-5x^3-14x^2$ তিনটি বীজগাণিতিক রাশি।

- ক) (3x-2y+z) এর বর্গ নির্ণয় কর।
- খ) ১ম ও ২য় রাশির গ.সা.ও নির্ণয় কর।
- গ) রাশি তিনটির ল.সা.গু নির্ণয় কর।

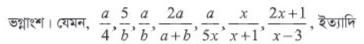
ষষ্ঠ অধ্যায় বীজগণিতীয় ভগ্নাংশ

ভগ্নাংশ অর্থ ভাঙা অংশ। আমরা দৈনন্দিন জীবনে একটি সম্পূর্ণ জিনিসের সাথে এর অংশও ব্যবহার করি। তাই ভগ্নাংশ, গণিতের একটি অপরিহার্য বিষয়। পাটিগণিতীয় ভগ্নাংশের মতো বীজগণিতীয় ভগ্নাংশেও লঘুকরণ ও সাধারণ হরবিশিষ্টকরণ গুরুত্বপূর্ণ ভূমিকা রাখে। পাটিগণিতীয় ভগ্নাংশের অনেক জটিল সমস্যা বীজগণিতীয় ভগ্নাংশের মাধ্যমে সহজে সমাধান করা যায়। কাজেই শিক্ষার্থীদের বীজগণিতীয় ভগ্নাংশ সম্পর্কে সুস্পষ্ট ধারণা থাকা প্রয়োজন। এ অধ্যায়ে বীজগণিতীয় ভগ্নাংশের লঘুকরণ, সাধারণ হরবিশিষ্টকরণ এবং যোগ ও বিয়োগ উপস্থাপন করা হয়েছে।


অধ্যায় শেষে শিক্ষার্থীরা —

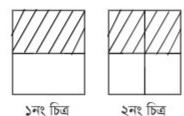
- বীজগণিতীয় ভগ্নাংশ কী তা ব্যাখ্যা করতে পারবে।
- বীজগণিতীয় ভগ্নাংশের লঘুকরণ ও সাধারণ হরবিশিষ্টকরণ করতে পারবে।
- বীজগণিতীয় ভগ্নাংশের যোগ, বিয়োগ ও সরলীকরণ করতে পারবে।

৬-১ ভগ্নাংশ


আবির একটি আপেল সমান দুইভাগে ভাগ করে এক ভাগ তার ভাই কবিরকে দিল। তাহলে দুই ভাইয়ের প্রত্যেকে পেল আপেলটির অর্ধেক, অর্থাৎ $\frac{1}{2}$ অংশ। এই $\frac{1}{2}$ একটি ভগ্নাংশ।

আবার ধরা যাক, টিনা একটি বৃত্তের 4 ভাগের 3 ভাগ কালো রং করল। তাহলে, তার রং করা হলো সম্পূর্ণ

বৃত্তটির $\frac{3}{4}$ অংশ। এখানে $\frac{1}{2}$, $\frac{3}{4}$ এগুলো পাটিগণিতীয় ভগ্নাংশ যাদের লব 1, 3 এবং হর 2, 4। যদি কোনো ভগ্নাংশের শুধু লব বা শুধু হর বা লব ও হর উভয়কে বীজগণিতীয় প্রতীক বা রাশি দ্বারা প্রকাশ করা হয়, তবে তা হবে বীজগণিতীয়


বীজগণিতীয় ভগ্নাংশ।

ফর্মা নং-১২, গণিত-৭ম শ্রেণি

৬-২ সমতুল ভগ্নাংশ

লক্ষ করি, দুটি সমান বর্গাকার ক্ষেত্রের ১নং চিত্রে দুই ভাগের এক ভাগ, অর্থাৎ $\frac{1}{2}$ অংশ কালো রং করা হয়েছে এবং ২নং চিত্রে চার

ভাগের দুই ভাগ, অর্থাৎ $\frac{2}{4}$ অংশ কালো রং করা হয়েছে। কিন্তু দেখা যায়, দুই চিত্রের মোট কালো রং করা অংশ সমান।

অতএব, আমরা লিখতে পারি,
$$\frac{1}{2} = \frac{1 \times 2}{2 \times 2} = \frac{2}{4}$$
; আবার, $\frac{1}{2} = \frac{1 \times 3}{2 \times 3} = \frac{3}{6}$

এভাবে,
$$\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{5}{10} = \dots$$
, এগুলো পরস্পর সমতুল ভগ্নাংশ।

একইভাবে বীজগণিতীয় ভগ্নাংশের ক্ষেত্রে,
$$\frac{a}{b}=\frac{a\times c}{b\times c}=\frac{ac}{bc}$$
 [লব ও হরকে c দ্বারা গুণ করে, $c\neq o$]

আবার,
$$\dfrac{ac}{bc}=\dfrac{ac\div c}{bc\div c}=\dfrac{a}{b}$$
 [লব ও হরকে c দ্বারা ভাগ করে, $c\ne o$]

$$\therefore \ rac{a}{b}$$
 এবং $rac{ac}{bc}$ পরস্পর সমতুল ভগ্নাংশ।

লক্ষণীয় যে, কোনো ভগ্নাংশের লব ও হরকে শূন্য ছাড়া একই রাশি দ্বারা গুণ বা ভাগ করলে, ভগ্নাংশের মানের কোনো পরিবর্তন হয় না।

কাজ :
$$\frac{2}{5}$$
 এবং $\frac{a}{x}$ এর প্রতিটির তিনটি করে সমতুল ভগ্নাংশ লেখ।

৬-৩ ভগ্নাংশের লঘুকরণ

কোনো ভগ্নাংশের লঘুকরণের অর্থ হলো ভগ্নাংশটিকে লঘিষ্ঠ আকারে পরিণত করা। এ জন্য লব ও হরকে এদের সাধারণ গুণনীয়ক বা উৎপাদক দ্বারা ভাগ করা হয়। কোনো ভগ্নাংশের লব ও হরের মধ্যে কোনো সাধারণ গুণনীয়ক বা উৎপাদক না থাকলে এরূপ ভগ্নাংশকে লঘিষ্ঠ আকারের ভগ্নাংশ বলা হয়।

উদাহরণ ১।
$$\frac{4a^2bc}{6ab^2c}$$
 কে লঘুকরণ কর।

সমাধান :
$$\frac{4a^2bc}{6ab^2c} = \frac{2\times2\times a\times a\times b\times c}{2\times3\times a\times b\times b\times c} = \frac{2a}{3b}$$

বীজগণিতীয় ভগ্নাংশ

ভগ্নাংশের লঘুকরণের মাধ্যমে নিচের খালি ঘরগুলো পূরণ কর (দৃটি করে দেখানো হলো):

বিকল্প পদ্ধতি :
$$\frac{4a^2bc}{6ab^2c} = \frac{2abc \times 2a}{2abc \times 3b} = \frac{2a}{3b}$$
 [লব ও হরের গ.সা.ও. $2abc$]

$\frac{9}{12} = \frac{3 \times 3}{2 \times 2 \times 3} = \frac{3}{4}$	$\frac{2^3}{2^4} =$
$\frac{a^2b}{ab^2} =$	$\frac{x^3}{x^2} = \frac{x \times x \times x}{x \times x} = x$
$\frac{3x}{6xy}$ =	$\frac{2mn}{4m^2} =$

উদাহরণ ২।
$$\frac{2a^2+3ab}{4a^2-9b^2}$$
 কে লঘিষ্ঠ আকারে পরিণত কর।

সমাধান :
$$\frac{2a^2 + 3ab}{4a^2 - 9b^2} = \frac{2a^2 + 3ab}{(2a)^2 - (3b)^2}$$
$$= \frac{a(2a + 3b)}{(2a + 3b)(2a - 3b)} = \frac{a}{2a - 3b} \quad \left[\because x^2 - y^2 = (x + y)(x - y)\right]$$

উদাহরণ ৩। লঘুকরণ কর :
$$\frac{x^2 + 5x + 6}{x^2 + 3x + 2}$$

সমাধান :
$$\frac{x^2 + 5x + 6}{x^2 + 3x + 2} = \frac{x^2 + 2x + 3x + 6}{x^2 + x + 2x + 2}$$
$$= \frac{x(x+2) + 3(x+2)}{x(x+1) + 2(x+1)} = \frac{(x+2)(x+3)}{(x+1)(x+2)} = \frac{x+3}{x+1}$$

৬-৪ সাধারণ হরবিশিষ্ট ভগ্নাংশ

সাধারণ হরবিশিষ্ট ভগ্নাংশকে সমহরবিশিষ্ট ভগ্নাংশও বলে। এক্ষেত্রে প্রদন্ত ভগ্নাংশগুলোর হর সমান করতে হয়। $\frac{a}{2b}$ ও $\frac{m}{3n}$ ভগ্নাংশ দুটি বিবেচনা করি। ভগ্নাংশ দুইটির হর 2b এবং 3n এর ল.সা.গু. 6bn.

অতএব, দুটি ভগ্নাংশেরই হর 6bn করতে হবে।

এখানে,
$$\frac{a}{2b} = \frac{a \times 3n}{2b \times 3n} \left[\because 6bn \div 2b = 3n \right]$$
$$= \frac{3an}{6bn}$$

এবং
$$\frac{m}{3n} = \frac{m \times 2b}{3n \times 2b} \left[\because 6bn \div 3n = 2b \right]$$
$$= \frac{2bm}{6bn}.$$

∴ সাধারণ হরবিশিষ্ট ভগ্নাংশ দুটি $\frac{3an}{6bn}$, $\frac{2bm}{6bn}$.

সাধারণ হরবিশিষ্ট ভগ্নাংশে প্রকাশ করার নিয়ম

- ভগ্নাংশগুলোর হরের ল.সা.গু. বের করতে হয়।
- ল.সা.গু. কে প্রত্যেক ভগ্নাংশের হর দারা ভাগ করে ভাগফল বের করতে হয়।
- প্রাপ্ত ভাগফল দ্বারা সংশ্লিষ্ট ভগ্নাংশের লব ও হরকে গুণ করতে হয় ।

উদাহরণ 8। সাধারণ হরবিশিষ্ট ভগ্নাংশে প্রকাশ কর : $\frac{a}{4x}$, $\frac{b}{2x^2}$

সমাধান : হর 4x এবং $2x^2$ এর ল.সা.গু. $4x^2$

$$\therefore \frac{a}{4x} = \frac{a \times x}{4x \times x} \left[\because 4x^2 \div 4x = x \right]$$
$$= \frac{ax}{4x^2}$$

এবং
$$\frac{b}{2x^2} = \frac{b \times 2}{2x^2 \times 2}$$

$$\left[\because 4x^2 \div 2x^2 = 2 \right]$$
$$= \frac{2b}{4x^2}$$

 \therefore সাধারণ হরবিশিষ্ট ভগ্নাংশ দুইটি $\dfrac{ax}{4x^2}$, $\dfrac{2b}{4x^2}$

উদাহরণ ৫। সাধারণ হরবিশিষ্ট ভগ্নাংশে রূপান্তর কর : $\dfrac{2}{a^2-4}$, $\dfrac{5}{a^2+3a-10}$

সমাধান : ১ম ভগ্নাংশের হর =
$$a^2 - 4 = (a+2)(a-2)$$

২য় ভগ্নাংশের হর =
$$a^2 + 3a - 10 = a^2 - 2a + 5a - 10$$

= $a(a-2) + 5(a-2) = (a-2)(a+5)$

হর দুইটির ল.সা.গু. (a+2)(a-2)(a+5)

বীজগণিতীয় ভগ্নাংশ

এবার ভগ্নাংশগুলোকে সমহরবিশিষ্ট করি।

$$\frac{2}{a^2-4} = \frac{2}{(a+2)(a-2)} = \frac{2\times(a+5)}{(a+2)(a-2)\times(a+5)}$$
 [লব ও হরকে $(a+5)$ দারা গুণ করে]
$$= \frac{2(a+5)}{(a^2-4)(a+5)}$$

এবং
$$\frac{5}{a^2+3a-10}=\frac{5}{(a-2)(a+5)}=\frac{5\times(a+2)}{(a-2)(a+5)\times(a+2)}$$
 [লব ও হরকে $(a+2)$] $=\frac{5(a+2)}{(a^2-4)(a+5)}$

∴ নির্ণেয় ভগ্নাংশ দুটি
$$\frac{2(a+5)}{(a^2-4)(a+5)}$$
 , $\frac{5(a+2)}{(a^2-4)(a+5)}$

উদাহরণ ৬। সাধারণ হরবিশিষ্ট ভগ্নাংশে পরিণত কর।

$$\frac{1}{x^2+3x}$$
, $\frac{2}{x^2+5x+6}$, $\frac{3}{x^2-x-12}$

সমাধান : ১ম ভগ্নাংশের হর = $x^2 + 3x = x(x+3)$

২য় ভগ্নাংশের হর =
$$x^2 + 5x + 6 = x^2 + 2x + 3x + 6$$

$$= x(x+2) + 3(x+2) = (x+2)(x+3)$$

৩য় ভগ্নাংশের হর =
$$x^2 - x - 12 = x^2 + 3x - 4x - 12$$

$$= x(x+3) - 4(x+3) = (x+3)(x-4)$$

হর তিনটির ল.সা.গু. x(x+2)(x+3)(x-4)

এবার ভগ্নাংশগুলোকে সমহরবিশিষ্ট করি-

: ১ম জ্ঞাংশ =
$$\frac{1}{x^2 + 3x}$$
 = $\frac{1 \times (x+2)(x-4)}{x(x+3) \times (x+2)(x-4)}$ = $\frac{(x+2)(x-4)}{x(x+2)(x+3)(x-4)}$

৯৪

হয় ভগ্নাংশ =
$$\frac{2}{x^2 + 5x + 6}$$
 = $\frac{2}{(x+2)(x+3)}$ = $\frac{2 \times x(x-4)}{(x+2)(x+3) \times x(x-4)}$ = $\frac{2x(x-4)}{x(x+2)(x+3)(x-4)}$

তয় ভগ্নাংশ =
$$\frac{3}{x^2 - x - 12}$$
 = $\frac{3}{(x+3)(x-4)}$ = $\frac{3 \times x(x+2)}{(x+3)(x-4) \times x(x+2)}$ = $\frac{3x(x+2)}{x(x+2)(x+3)(x-4)}$

নির্ণেয় ভগ্নাংশ তিনটি যথাক্রমে

$$\frac{(x+2)(x-4)}{x(x+2)(x+3)(x-4)}$$
, $\frac{2x(x-4)}{x(x+2)(x+3)(x-4)}$, $\frac{3x(x+2)}{x(x+2)(x+3)(x-4)}$

কাজ :

১। রাশি তিনটির ল.সা.গু. নির্ণয় কর : a^2+3a , a^2+5a+6 , a^2-a-12

২। সাধারণ হরবিশিষ্ট ভগ্নাংশে প্রকাশ কর : $\frac{a}{2x}$, $\frac{b}{4y}$

অনুশীলনী ৬-১

লঘিষ্ঠ আকারে প্রকাশ কর (১-১০)।

$$3 + \frac{a^2b}{a^3c}$$
 $\Rightarrow + \frac{a^2bc}{ab^2c}$ $9 + \frac{x^3y^3z^3}{x^2y^2z^2}$ $8 + \frac{x^2+x}{xy+y}$ $e + \frac{4a^2b}{6a^3b}$ $9 + \frac{2a-4ab}{1-4b^2}$

$$9 + \frac{2a+3b}{4a^2-9b^2}$$
 $\forall + \frac{a^2+4a+4}{a^2-4}$ $\forall + \frac{x^2-y^2}{(x+y)^2}$ $\forall + \frac{x^2+2x-15}{x^2+9x+20}$

বীজগণিতীয় ভগ্নাংশ

সাধারণ হরবিশিষ্ট ভগ্নাংশে প্রকাশ কর (১১-২০)।

$$35 + \frac{a}{bc}, \frac{a}{ac} \quad 35 + \frac{x}{pq}, \frac{y}{pr} \quad 30 + \frac{2x}{3m}, \frac{3y}{2n} \quad 38 + \frac{a}{a-b}, \frac{b}{a+b}$$

$$36 + \frac{x^2}{a^2 - 2ab}, \frac{y^2}{a + 2b} \quad 36 + \frac{3}{a^2 - 4}, \frac{2}{a(a+2)} \quad 39 + \frac{a}{a^2 - 9}, \frac{b}{a+3}$$

$$36 + \frac{a}{a+b}, \frac{b}{a-b}, \frac{c}{a-c} \quad 36 + \frac{a}{a-b}, \frac{b}{a+b}, \frac{c}{a(a+b)}$$

$$30 + \frac{2}{x^2 - x - 2}, \frac{3}{x^2 + x - 6}$$

৬-৫ বীজগণিতীয় ভগ্নাংশের যোগ, বিয়োগ ও সরলীকরণ

পাটিগণিত	বীজগণিত
সম্পূর্ণ বর্গাকার ক্ষেত্রটিকে 1 ধরা হলে, এর	সম্পূর্ণ বর্গাকার ক্ষেত্রটিকে x ধরা হলে, এর
কালো অংশ = 1 এর $\frac{2}{4} = \frac{2}{4}$	কালো অংশ = x এর $\frac{2}{4} = \frac{2x}{4}$
দাগটানা অংশ = 1 এর $\frac{1}{4} = \frac{1}{4}$	দাগটানা অংশ = x এর $\frac{1}{4} = \frac{x}{4}$
∴ মোট রং করা অংশ = $\left[\frac{2}{4} + \frac{1}{4}\right]$	∴ মোট রং করা অংশ = $\frac{2x}{4} + \frac{x}{4}$
(কালো ও দাগ কাটা) = $\frac{2+1}{4} = \frac{3}{4}$	(কালো ও দাগ কাটা) $=$ $\frac{2x+x}{4}$ $=$ $\frac{3x}{4}$
$\therefore \text{ সাদা অংশ } = \left(1 - \frac{3}{4}\right) = \boxed{\frac{4}{4} - \frac{3}{4}}$	$\therefore \text{ সাদা অংশ} = x - \frac{3x}{4} = \boxed{\frac{4x}{4} - \frac{3x}{4}}$
$=\frac{4-3}{4}=\frac{1}{4}$	$=\frac{4x-3x}{4}=\frac{x}{4}$

লক্ষ করি, উপরের ঘরের মধ্যে লেখা ভগ্নাংশগুলোকে যোগ ও বিয়োগের ক্ষেত্রে সাধারণ হরবিশিষ্ট করা হয়েছে।

বীজগণিতীয় ভগ্নাংশের যোগ ও বিয়োগের নিয়ম

- ভগ্নাংশগুলোকে লঘিষ্ঠ সাধারণ হরবিশিষ্ট করতে হয়।
- যোগফলের হর লঘিষ্ঠ সাধারণ হর এবং লব রূপান্তরিত ভগ্নাংশগুলোর লবের যোগফল।
- বিয়োগফলের হর লঘিষ্ঠ সাধারণ হর এবং লব রূপান্তরিত ভগ্নাংশগুলোর লবের বিয়োগফল।

বীজগণিতীয় ভগ্নাংশের যোগ

উদাহরণ ৭। যোগ কর :
$$\frac{x}{a}$$
 এবং $\frac{y}{a}$

সমাধান :
$$\frac{x}{a} + \frac{y}{a} = \frac{x+y}{a}$$

উদাহরণ ৮। যোগফল নির্ণয় কর :
$$\frac{3a}{2x} + \frac{b}{2y}$$

সমাধান :
$$\frac{3a}{2x} + \frac{b}{2y} = \frac{3a \times y}{2x \times y} + \frac{b \times x}{2y \times x} = \frac{3ay + bx}{2xy}$$
 [$2x$, $2y$ এর ল.সা.গু. $2xy$ নিয়ে]

বীজগণিতীয় ভগ্নাংশের বিয়োগ

উদাহরণ ৯। বিয়োগ কর :
$$\frac{a}{x}$$
 থেকে $\frac{b}{x}$

সমাধান :
$$\frac{a}{x} - \frac{b}{x} = \frac{a-b}{x}$$

উদাহরণ ১০।
$$\frac{2a}{3x}$$
 থেকে $\frac{b}{3y}$ বিয়োগ কর। $(3x ও 3y এর ল.সা.গু 3xy)$

সমাধান :
$$\frac{2a}{3x} - \frac{b}{3y} = \frac{2a \times y}{3xy} - \frac{b \times x}{3xy} = \frac{2ay - bx}{3xy}$$

উদাহরণ ১১। বিয়োগফল নির্ণয় কর :
$$\frac{1}{a+2} - \frac{1}{a^2-4}$$
 ($3x ও 3y এর ল.সা.গু $3xy$)$

সমাধান :
$$\frac{1}{a+2} - \frac{1}{a^2 - 4} = \frac{1}{a+2} - \frac{1}{(a+2)(a-2)} = \frac{1 \times (a-2)}{(a+2) \times (a-2)} - \frac{1}{(a+2)(a-2)}$$
$$= \frac{(a-2)-1}{(a+2)(a-2)} = \frac{a-2-1}{(a+2)(a-2)} = \frac{a-3}{a^2 - 4}$$

$\frac{1}{5} + \frac{3}{5} =$	$\frac{4}{5} - \frac{2}{5} =$
$\frac{3}{m} + \frac{2}{n} =$	$\frac{5}{ab} - \frac{1}{a} =$
$\frac{2}{x} + \frac{5}{2x} =$	$\frac{7}{xyz} - \frac{2z}{xy} =$
$\frac{3}{m} + \frac{2}{m^2} =$	$\frac{5}{p^2} - \frac{2}{3p} =$

বীজগণিতীয় ভগ্নাংশের সরলীকরণ

প্রক্রিয়া চিহ্ন দ্বারা সংযুক্ত দুই বা ততোধিক বীজগণিতীয় ভগ্নাংশকে একটি ভগ্নাংশে বা রাশিতে পরিণত করাই হলো ভগ্নাংশের সরলীকরণ। এতে প্রাপ্ত ভগ্নাংশটিকে লঘিষ্ঠ আকারে প্রকাশ করা হয়।

উদাহরণ ১২। সরল কর :
$$\frac{a}{a+b} + \frac{b}{a-b}$$

সমাধান:
$$\frac{a}{a+b} + \frac{b}{a-b} = \frac{a \times (a-b) + b \times (a+b)}{(a+b)(a-b)} = \frac{a^2 - ab + ab + b^2}{(a+b)(a-b)}$$

$$= \frac{a^2 + b^2}{a^2 - b^2}$$

উদাহরণ ১৩। সরল কর :
$$\frac{x+y}{xy} - \frac{y+z}{yz}$$

সমাধান :
$$\frac{x+y}{xy} - \frac{y+z}{yz} = \frac{z \times (x+y) - x \times (y+z)}{xyz} = \frac{zx + zy - xy - xz}{xyz}$$

$$=\frac{yz-xy}{xyz}=\frac{y(z-x)}{xyz}=\frac{z-x}{xz}$$

ফর্মা নং-১৩, গণিত-৭ম শ্রেণি

গণিত pp

উদাহরণ ১৪। সরল কর :
$$\frac{x-y}{xy} + \frac{y-z}{yz} - \frac{z-x}{zx}$$

সমাধান:
$$\frac{x-y}{xy} + \frac{y-z}{yz} - \frac{z-x}{zx} = \frac{(x-y) \times z + (y-z) \times x - (z-x) \times y}{xyz}$$
$$= \frac{zx - yz + xy - zx - yz + xy}{xyz} = \frac{2xy - 2yz}{xyz} = \frac{2y(x-z)}{xyz} = \frac{2(x-z)}{xz}$$

অনুশীলনী ৬-২

১। $\frac{2}{3a}$ ও $\frac{3}{5ab}$ এর সমহরবিশিষ্ট ভগ্নাংশ নিচের কোনটি?

$$(4) \ \frac{10b}{15ab}, \frac{9}{15ab} \ (4) \ \frac{6}{15ab}, \frac{b}{15ab} \ (9) \ \frac{2}{15a^2b}, \frac{3}{15a^2b} \ (9) \ \frac{10a}{15a^2b}, \frac{9a}{15a^2b}$$

২। $\frac{x}{yz}$ ও $\frac{y}{zx}$ এর সাধারণ হরবিশিষ্ট ভগ্নাংশ নিচের কোনটি?

$$(\mathfrak{F}) \ \frac{zx^2}{xyz^2}, \ \frac{y^2z}{xyz^2} \ (\mathfrak{F}) \ \frac{x^2}{xyz^2}, \ \frac{y^2}{xyz^2} \ (\mathfrak{F}) \ \frac{x}{xyz}, \ \frac{y}{xyz} \ (\mathfrak{F}) \ \frac{x^2}{xyz}, \ \frac{y^2}{xyz}$$

৩। $\frac{1}{a+b} + \frac{1}{a-b}$ এর মান কত?

$$(\vec{\Phi}) \quad \frac{2}{a^2 - b^2} \qquad \qquad (\vec{\Psi}) \quad \frac{1}{a^2 - b^2}$$

$$(4) \frac{1}{a^2 - b^2}$$

$$(\mathfrak{I})$$
 $\frac{2a}{a^2-b^2}$

$$(\mathfrak{P}) \quad \frac{2a}{a^2 - b^2} \qquad (\mathfrak{P}) \quad \frac{ab}{a^2 - b^2}$$

8। $\frac{x}{2} + 1 = 3$ এর সমাধান নিচের কোনটি?

- (前) 6

বীজগণিতীয় ভগ্নাংশ 66

c। $\frac{a}{b}$ এর সমতুল ভগ্নাংশ নিচের কোনটি?

- (গ) $\frac{a^3}{h^2}$
- (ঘ) $\frac{ac}{bc}$

ও। $\frac{4a^2b-9b^3}{4a^2b+6ab^2}$ এর লখিষ্ঠ রূপ নিচের কোনটি?

- $\frac{2a+3b}{2ab} \qquad \qquad (\forall l) \qquad \frac{2a-3b}{2ab}$
- $\frac{2a-3b}{2a} \qquad \qquad (\ensuremath{\ensuremath{\,\overline{\forall}}}) \qquad \frac{2a+3b}{2a}$

৭। $\frac{a}{x} + \frac{b}{x} - \frac{c}{x}$ এর মান কত?

- $\frac{(\overline{\Phi})}{x} \qquad \frac{a+b+c}{x} \qquad \qquad (\overline{\Psi}) \qquad \frac{a+b-c}{x}$
- $\frac{a-b-c}{x} \qquad \qquad (\mathfrak{P}) \qquad \frac{a-b+c}{x}$

নিচের তথ্যের আলোকে ৮ ও ৯ নং প্রশ্নের উত্তর দাও:

$$\frac{x^2 + 4x + 4}{x^2 - 4}$$

৮। হরের উৎপাদকে বিশ্লেষিত রূপ কোনটি?

- (\mathfrak{P}) (x+2)(x-2) (\mathfrak{P}) (2+x)(2-x), (\mathfrak{P}) (x-2)(x-2) (\mathfrak{P}) (x+1)(x-4)

ভগ্নাংশটির লখিষ্ট আকার কোনটি?

- ($\overline{+}$)
 $\frac{x+2}{x-2}$ ($\overline{+}$)
 $\frac{x-2}{x+2}$

 ($\overline{+}$)
 $\frac{x+2}{x^2+2}$ ($\overline{+}$)
 ($\overline{+}$)
 $\frac{x-2}{x^2-4}$

যোগফল নির্ণয় কর (১০-১৫)

$$3a + \frac{3a}{5} + \frac{2b}{5}$$
 $33 + \frac{1}{5x} + \frac{2}{5x}$ $33 + \frac{x}{2a} + \frac{y}{3b}$ $30 + \frac{2a}{x+1} + \frac{2a}{x-2}$ $38 + \frac{a}{a+2} + \frac{2}{a-2}$

$$3@ + \frac{3}{x^2 - 4x - 5} + \frac{4}{x + 1}$$

বিয়োগফল নির্ণয় কর (১৬-২১)

$$3 + \frac{2a}{7} - \frac{4b}{7}$$

$$39 + \frac{2a}{7} - \frac{4b}{7}$$
 $39 + \frac{2x}{5a} - \frac{4y}{5a}$ $3b + \frac{a}{8x} - \frac{b}{4y}$

$$3b + \frac{a}{8x} - \frac{b}{4v}$$

$$3 + \frac{3}{x+3} - \frac{2}{x+2}$$

$$\ge 0 \mid \frac{p+q}{pq} - \frac{q+r}{qr}$$

$$3 = \frac{3}{x+3} - \frac{2}{x+2}$$
 $9 = \frac{p+q}{pq} - \frac{q+r}{qr}$ $9 = \frac{2x}{x^2 - 4y^2} - \frac{x}{xy + 2y^2}$

সরল কর : (২২-২৭)

$$8 + \frac{5}{a^2 - 6a + 5} + \frac{1}{a - 1}$$
 $80 + \frac{1}{x + 2} - \frac{1}{x^2 - 4}$ $81 + \frac{a}{3} + \frac{a}{6} - \frac{3a}{8}$

$$80 \cdot \frac{1}{x+2} - \frac{1}{x^2-4}$$

$$8 + \frac{a}{3} + \frac{a}{6} - \frac{3a}{8}$$

$$\Re a \cdot \frac{a}{b} - \frac{3a}{2b} + \frac{2a}{3b}$$

$$86 \cdot \frac{x}{vz} - \frac{y}{zx} + \frac{z}{xv}$$

$$8a + \frac{a}{b} - \frac{3a}{2b} + \frac{2a}{3b}$$
 $8b + \frac{x}{yz} - \frac{y}{zx} + \frac{z}{xy}$ $8a + \frac{x-y}{xy} + \frac{y-z}{yz} + \frac{z-x}{zx}$

২৮। তিনটি বীজগণিতীয় ভগ্নাংশ :
$$\frac{x}{x+y}$$
 , $\frac{x}{x-4y}$, $\frac{y}{x^2-3xy-4y^2}$

- ক. ৩য় ভগ্নাংশের হরকে উৎপাদকে বিশ্লেষণ কর।
- ১ম ও ২য় ভগ্নাংশকে সমহরবিশিষ্ট ভগ্নাংশে প্রকাশ কর।
- গ. ভগ্নাংশ তিনটির যোগফল নির্ণয় কর।

বীজগণিতীয় ভগ্নাংশ ১০১

২৯। $A = \frac{1}{x^2 + 3x}$, $B = \frac{2}{x^2 + 5x + 6}$ এবং $C = \frac{3}{x^2 - x - 12}$ তিনটি বীজগাণিতিক রাশি।

- ক) B ভগ্নাংশটির হরকে উৎপাদকে বিশ্লেষণ কর।
- খ) A, B ও C কে সমহরবিশিষ্ট ভগ্নাংশে প্রকাশ কর।
- গ) A+B-C এর সরলীকরণ কর।

৩০। তিনটি বীজগাণিতীয় ভগ্নাংশ:

$$\frac{1}{a^2+3a}$$
, $\frac{1}{a^2+5a+6}$, $\frac{1}{a^2-a-12}$

- (ক) ৩য় ভগ্নাংশের হরকে উৎপাদকে বিশ্লেষণ কর।
- (খ) ১ম ও ২য় ভগ্নাংশকে সমহরবিশিষ্ট ভগ্নাংশে রূপান্তর কর।
- (গ) ১ম, ২য় ও ৩য় ভগ্নাংশের যোগফল নির্ণয় কর।

সপ্তম অধ্যায়

সরল সমীকরণ

আমরা ষষ্ঠ শ্রেণিতে সমীকরণ ও সরল সমীকরণ কী তা জেনেছি এবং বাস্তবভিত্তিক সমস্যা থেকে সমীকরণ গঠন করে তা সমাধান করতে শিখেছি। সপ্তম শ্রেণির এ অধ্যায়ে আমরা সমীকরণ সমাধানের কিছু বিধি ও এদের প্রয়োগ সম্পর্কে জানব এবং বাস্তব সমস্যার ভিত্তিতে সমীকরণ গঠন করে তা সমাধান করা শিখব। এ ছাড়াও এ অধ্যায়ে লেখচিত্র সম্পর্কে প্রাথমিক ধারণা দেওয়া হয়েছে এবং সমীকরণের সমাধান লেখচিত্রে দেখানো হয়েছে।

অধ্যায় শেষে শিক্ষার্থীরা —

- সমীকরণের পক্ষান্তরবিধি, বর্জনবিধি, আড়গুণনবিধি, প্রতিসাম্যবিধি ব্যাখ্যা করতে পারবে।
- সমীকরণের বিধিসমূহ প্রয়োগ করে সমীকরণ সমাধান করতে পারবে ।
- সরল সমীকরণ গঠন ও সমাধান করতে পারবে।
- লেখচিত্র কী তা ব্যাখ্যা করতে পারবে।
- লেখচিত্রের অক্ষ ও সুবিধাজনক একক নিয়ে বিন্দুপাতন করতে পারবে।
- লেখচিত্রের সাহায্যে সমীকরণের সমাধান করতে পারবে ।

৭-১ পূর্ব পাঠের পুনরালোচনা

(১) যোগের ও গুণের বিনিময়বিধি
 a, b এর যেকোনো মানের জন্য, a + b = b + a এবং ab = ba

(২) গুণের বন্টনবিধি

a,b,c এর যেকোনো মানের জন্য, a(b+c)=ab+ac,(b+c)a=ba+ca

আমরা সমীকরণটি লক্ষ করি : x + 3 = 7.

- (ক) সমীকরণটির অজ্ঞাত রাশি বা চলক কোনটি?
- (থ) সমীকরণটির প্রক্রিয়া চিহ্ন কোনটি?
- (গ) সমীকরণটি সরল সমীকরণ কি না?
- (ঘ) সমীকরণটির মূল কত?

আমরা জানি চলক, প্রক্রিয়া চিহ্ন ও সমান চিহ্ন সংবলিত গাণিতিক বাক্যকে সমীকরণ বলে। আর চলকের এক ঘাত বিশিষ্ট সমীকরণকে সরল সমীকরণ বলে। সরল সমীকরণ এক বা একাধিক চলকবিশিষ্ট হতে পারে।

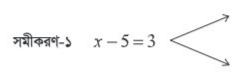
যেমন,
$$x+3=7$$
, $2y-1=y+3$, $3z-5=0$, $4x+3=x-1$,

সরল সমীকরণ 500

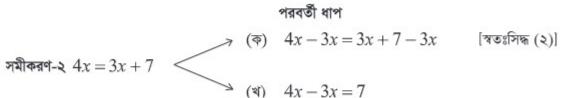
আমরা এ অধ্যায়ে শুধু এক চলকবিশিষ্ট সরল সমীকরণ নিয়ে আলোচনা করব। সমীকরণ সমাধান করে চলকের যে মান পাওয়া যায়, একে সমীকরণটির মূল বলে। মূলটি দ্বারা সমীকরণটি সিদ্ধ হয়। অর্থাৎ, চলকটির ঐ মান সমীকরণে বসালে সমীকরণটির দুইপক্ষ সমান হয়।

সমীকরণ সমাধানের জন্য চারটি স্বতঃসিদ্ধ আছে, তা আমরা জানি। এগুলো হলো:

- পরস্পর সমান রাশির প্রত্যেকটির সাথে একই রাশি যোগ করলে যোগফলগুলো পরস্পর সমান হয়।
- পরস্পর সমান রাশির প্রত্যেকটি থেকে একই রাশি বিয়োগ করলে বিয়োগফলগুলো পরস্পর সমান হয়।
- পরস্পর সমান রাশির প্রত্যেকটিকে একই রাশি দারা গুণ করলে গুণফলগুলো পরস্পর সমান হয়।
- পরস্পর সমান রাশির প্রত্যেকটিকে অশূন্য একই রাশি দ্বারা ভাগ করলে ভাগফলগুলো পরস্পর সমান হয়।


কাজ :

2x-1=0 সমীকরণটির ঘাত কত? এর প্রক্রিয়া চিহ্ন কোনটি লিখ। সমীকরণটির মূল কত?


৭-২ সমীকরণের বিধিসমূহ

(১) পক্ষান্তরবিধি

(ক)
$$x-5+5=3+5$$
 [স্বতঃসিদ্ধ (১)]

(ক)
$$4x - 3x = 3x + 7 - 3x$$
 [স্বতঃসিদ্ধ (২)]

সমীকরণ-১ এ (খ) এর ক্ষেত্রে 5 এর চিহ্ন পরিবর্তিত হয়ে বামপক্ষ থেকে ডানপক্ষে গেছে। সমীকরণ-২ এ

কোনো সমীকরণের যেকোনো পদকে এক পক্ষ থেকে চিহ্ন পরিবর্তন করে অপরপক্ষে সরাসরি স্থানান্তর করা যায়। এই স্থানান্তরকে বলে পক্ষান্তরবিধি।

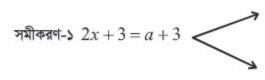
(খ) এর ক্ষেত্রে 3x এর চিহ্ন পরিবর্তিত হয়ে ডানপক্ষ থেকে বামপক্ষে গেছে।

উদাহরণ ১। সমাধান কর : x + 3 = 9

সমাধান: x + 3 = 9

বা, x=9-3 [পক্ষান্তর করে]

বা, x=6


∴ সমাধান : x = 6

১০৪

(২) বর্জনবিধি

(a) যোগের বর্জনবিধি:

পরবর্তী ধাপ

(ক) 2x+3-3=a+3-3 [স্বতঃসিদ্ধ (২)]

 $(\forall) \ 2x = a$

পরবর্তী ধাপ

সমীকরণ-২
$$7x-5=2a-5$$

্ব (ক) 7x - 5 + 5 = 2a - 5 + 5 [স্বতঃসিদ্ধ (১)]

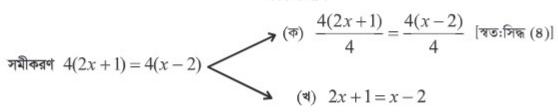
(4) 7x = 2a

সমীকরণ-১ এ (খ) এর ক্ষেত্রে উভয়পক্ষ থেকে 3 বর্জন করা হয়েছে।

সমীকরণ-২ এ (খ) এর ক্ষেত্রে উভয়পক্ষ থেকে - 5 বর্জন করা হয়েছে।

কোনো সমীকরণের উভয়পক্ষ থেকে একই চিহ্নযুক্ত সদৃশ পদ সরাসরি বর্জন করা যায়। একে বলা হয় যোগের (বা বিয়োগের) বর্জনবিধি।

বিকল্প নিয়ম : x + 3 = 9


বা, x+3-3=9-3 [উভয়পক্ষ থেকে 3 বিয়োগ করে]

বা. x=6

∴ সমাধান : x = 6

(b) গুণের বর্জনবিধি

পরবর্তী ধাপ

(খ) এর ক্ষেত্রে প্রদত্ত সমীকরণটির উভয়পক্ষ থেকে সাধারণ উৎপাদক সরাসরি বর্জন করা যায়।

কোনো সমীকরণের উভয়পক্ষ থেকে সাধারণ উৎপাদক সরাসরি বর্জন করা যায়। একে বলা হয় গুণের বর্জনবিধি।

উদাহরণ ২। সমাধান কর ও শুদ্ধি পরীক্ষা কর : 4y-5=2y-1

সমাধান: 4y - 5 = 2y - 1

সরল সমীকরণ

বা,
$$4y - 2y = -1 + 5$$
 [পক্ষান্তর করে]

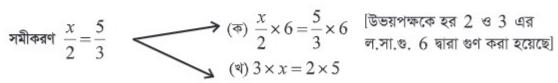
বা,
$$2y=4$$

বা,
$$2y = 2 \times 2$$

বা, y=2 [উভয়পক্ষ থেকে সাধারণ উৎপাদক 2 বর্জন করে]

ভদ্ধি পরীক্ষা: প্রদত্ত সমীকরণে γ এর মান 2 বসিয়ে পাই,

বামপক্ষ =
$$4y - 5 = 4 \times 2 - 5 = 8 - 5 = 3$$


ডানপক =
$$2y - 1 = 2 \times 2 - 1 = 4 - 1 = 3$$

∴ বামপক্ষ = ডানপক্ষ

∴ সমীকরণটির সমাধান গুদ্ধ হয়েছে।

(৩) আড়গুণনবিধি

পরবর্তী ধাপ

সমীকরণটির (খ) এর ক্ষেত্রে লিখতে পারি,

বামপক্ষের লব × ডানপক্ষের হর = বামপক্ষের হর × ডানপক্ষের লব একে বলা হয় **আডগুণনবিধি**।

উদাহরণ ৩। সমাধান কর :
$$\frac{2z}{3} - \frac{z}{6} = -\frac{3}{4}$$

সমাধান :
$$\frac{2z}{3} - \frac{z}{6} = -\frac{3}{4}$$

বা,
$$\frac{4z-z}{6} = -\frac{3}{4}$$
 [বামপক্ষে হর 3, 6 এর ল.সা.গু. 6]

$$\overline{4}$$
, $\frac{3z}{6} = -\frac{3}{4}$

ফর্মা নং-১৪, গণিত-৭ম শ্রেণি

১০৬

$$\overline{4}, \quad \frac{z}{2} = -\frac{3}{4}$$

বা,
$$4 \times z = 2 \times (-3)$$
 [আড়গুণন করে]

$$\overline{\mathsf{at}}, \quad 2 \times 2z = 2 \times (-3)$$

বা,
$$2z = -3$$
 [উভয়পক্ষ থেকে সাধারণ উৎপাদক 2 বর্জন করে]

বা,
$$\frac{2z}{2} = -\frac{3}{2}$$
 [উভয়পক্ষকে 2 দ্বারা ভাগ করে]

ৰা,
$$z = -\frac{3}{2}$$

∴ সমাধান :
$$z = -\frac{3}{2}$$

(৪) প্রতিসাম্যবিধি

সমীকরণ :
$$2x + 1 = 5x - 8$$

বা, $5x - 8 = 2x + 1$

একই সাথে বামপক্ষের সবগুলো পদ ডানপক্ষে ও ডানপক্ষের সবগুলো পদ বামপক্ষে কোনো চিহ্ন পরিবর্তন না করে স্থানান্তর করা যায়। একে বলা হয় প্রতিসাম্যবিধি।

উল্লিখিত স্বতঃসিদ্ধসমূহ ও বিধিসমূহ প্রয়োগ করে একটি সমীকরণকে অপর একটি সহজ সমীকরণে রূপান্তর করে সবশেষে তা x=a আকারে পাওয়া যায়। অর্থাৎ, চলক x এর মান a নির্ণয় করা হয়।

উদাহরণ 8। সমাধান কর : 2(5+x)=16

সমাধান : 2(5+x)=16

বা,
$$2 \times 5 + 2 \times x = 16$$
 [বন্টনবিধি অনুসারে]

$$41, \quad 10 + 2x = 16$$

বা,
$$2x = 16 - 10$$
 [পক্ষান্তরবিধি]

বা,
$$2x = 6$$

বা,
$$\frac{2x}{2} = \frac{6}{2}$$
 [গুণের বন্টনবিধি]

বা,
$$x=3$$

209 সরল সমীকরণ

উদাহরণ ৫। সমাধান কর :
$$\frac{3x+7}{4} + \frac{5x-4}{7} = x+3\frac{1}{2}$$

সমাধান :
$$\frac{3x+7}{4} + \frac{5x-4}{7} = x+3\frac{1}{2}$$

বা,
$$\frac{3x+7}{4} + \frac{5x-4}{7} - x = \frac{7}{2}$$
 [পক্ষান্তর করে]

বা,
$$\frac{7(3x+7)+4(5x-4)-28x}{28}=\frac{7}{2} \quad [বামপক্ষে হর 4, 7 এর ল.সা.গু. 28]$$
 বা,
$$\frac{21x+49+20x-16-28x}{28}=\frac{7}{2} \quad [বণ্টনবিধি অনুসারে]$$

ৰা,
$$\frac{21x + 49 + 20x - 16 - 28x}{28} = \frac{7}{2}$$
 [বল্টনবিধি অনুসারে]

$$\boxed{41, \quad \frac{13x + 33}{28} = \frac{7}{2}}$$

বা,
$$28 \times \frac{13x + 33}{28} = 28 \times \frac{7}{2}$$
 [উভয়পক্ষকে 28 দ্বারা গুণ করে]

$$41$$
, $13x + 33 = 98$

বা,
$$13x = 65$$

বা,
$$\frac{13x}{13} = \frac{65}{13}$$
 [উভয়পক্ষকে 13 দ্বারা ভাগ করে]

বা,
$$x=5$$

কাজ: সমাধান কর।

$$3 + 2x - 1 = 0$$
 $4 + 2x - 1 = 3$ $0 + 4(y - 3) = 8$

অনুশীলনী ৭-১

সমাধান কর:

$$3 + 4x + 1 = 2x + 7$$

$$9 \mid 3y+1=7y-1$$

$$e + 17 - 2z = 3z + 2$$

$$\frac{8}{2}$$
 91 $\frac{x}{4} = \frac{1}{3}$

$$> 1 \quad 5x - 3 = 2x + 3$$

$$8 + 7y - 5 = y - 1$$

$$9 \cdot 13z - 5 = 3 - 2z$$

$$b + \frac{x}{2} + 1 = 3$$

$$3 + \frac{x}{3} + 5 = \frac{x}{2} + 7$$

$$30 + \frac{y}{2} - \frac{y}{3} = \frac{y}{5} - \frac{1}{6}$$

$$31 + \frac{y}{5} - \frac{2}{7} = \frac{5y}{7} - \frac{4}{5}$$

$$32 + \frac{2z - 1}{3} = 5$$

$$33 + \frac{5x}{7} + \frac{4}{5} = \frac{x}{5} + \frac{2}{7}$$

$$38 + \frac{y - 2}{4} + \frac{2y - 1}{3} = y - \frac{1}{3}$$

$$36 + \frac{3y + 1}{5} = \frac{3y - 7}{3}$$

$$36 + \frac{x + 1}{2} - \frac{x - 2}{3} - \frac{x - 3}{5} = 2$$

$$39 + 2(x + 3) = 10$$

$$38 + 5 = \frac{x}{2} + 7$$

$$38 + \frac{y - 2}{4} + \frac{2y - 1}{3} = y - \frac{1}{3}$$

$$38 + \frac{x + 1}{2} - \frac{x - 2}{3} - \frac{x - 3}{5} = 2$$

$$39 + 2(x + 3) = 10$$

$$38 + 5 = \frac{x}{7} + \frac{2y - 1}{3} = y - \frac{1}{3}$$

$$38 + \frac{x + 1}{2} - \frac{x - 2}{3} - \frac{x - 3}{5} = 2$$

$$39 + 2(x + 3) = 10$$

$$38 + 5 = \frac{x}{7} + \frac{2y - 1}{3} = y - \frac{1}{3}$$

$$38 + \frac{x + 1}{2} - \frac{x - 2}{3} - \frac{x - 3}{5} = 2$$

$$39 + 2(x + 3) = 10$$

$$38 + 5 = \frac{x}{7} + \frac{x - 2}{3} - \frac{x - 3}{5} = 2$$

$$38 + \frac{x - 1}{2} - \frac{x - 2}{3} - \frac{x - 3}{5} = 2$$

$$38 + \frac{x - 1}{2} - \frac{x - 2}{3} - \frac{x - 3}{5} = 2$$

$$38 + \frac{x - 1}{2} - \frac{x - 3}{3} - \frac{x - 3}{5} = 2$$

$$38 + \frac{x - 1}{2} - \frac{x - 3}{3} - \frac{x - 3}{5} = 2$$

$$38 + \frac{x - 1}{2} - \frac{x - 3}{3} - \frac{x - 3}{5} = 2$$

$$38 + \frac{x - 1}{2} - \frac{x - 3}{3} - \frac{x - 3}{5} = 2$$

$$38 + \frac{x - 1}{2} - \frac{x - 3}{3} - \frac{x - 3}{5} = 2$$

$$38 + \frac{x - 1}{2} - \frac{x - 3}{3} - \frac{x - 3}{5} = 2$$

$$38 + \frac{x - 1}{2} - \frac{x - 3}{3} - \frac{x - 3}{5} = 2$$

$$38 + \frac{x - 1}{2} - \frac{x - 3}{3} - \frac{x - 3}{5} = 2$$

$$38 + \frac{x - 1}{2} - \frac{x - 3}{3} - \frac{x - 3}{5} = 2$$

$$38 + \frac{x - 1}{2} - \frac{x - 3}{3} - \frac{x - 3}{5} = 2$$

$$38 + \frac{x - 1}{2} - \frac{x - 3}{3} - \frac{x - 3}{5} = 2$$

$$38 + \frac{x - 1}{2} - \frac{x - 3}{3} - \frac{x - 3}{5} = 2$$

$$38 + \frac{x - 1}{2} - \frac{x - 3}{3} - \frac{x - 3}{5} = 2$$

$$38 + \frac{x - 1}{2} - \frac{x - 3}{3} - \frac{x - 3}{5} = 2$$

$$38 + \frac{x - 1}{2} - \frac{x - 3}{3} - \frac{x - 3}{5} = 2$$

$$38 + \frac{x - 1}{2} - \frac{x - 3}{3} - \frac{x - 3}{5} = 2$$

$$38 + \frac{x - 1}{2} - \frac{x - 3}{3} - \frac{x - 3}{5} = 2$$

$$38 + \frac{x - 1}{2} - \frac{x - 3}{3} - \frac{x - 3}{5} = 2$$

$$38 + \frac{x - 1}{2} - \frac{x - 3}{3} - \frac{x - 3}{5} = 2$$

$$38 + \frac{x - 1}{2} - \frac{x - 3}{3} - \frac{x - 3}{5} = 2$$

৭-৩ সরল সমীকরণ গঠন ও সমাধান

একজন ক্রেতা 3 কেজি পাটালি গুড় কিনতে চান। দোকানদার x কেজি ওজনের একটি বড়ো পাটালির অর্ধেক মাপলেন। কিন্তু এতে 3 কেজির কম হলো। আরও 1 কেজি দেওয়ায় 3 কেজি হলো। আমরা এখন বের করতে চাই, বড়ো পাটালি অর্থাৎ সম্পূর্ণ পাটালিটির ওজন কত ছিল, অর্থাৎ x এর মান কত? এ জন্য সমস্যাটি থেকে একটি সমীকরণ গঠন করতে হবে। এক্ষেত্রে সমীকরণটি হবে $\frac{x}{2}+1=3$ । সমীকরণটি সমাধান করলে x এর মান পাওয়া যাবে। অর্থাৎ, গুড়ের সম্পূর্ণ পাটালির ওজন জানা যাবে।

	প্রদত্ত তথ্য	সমীকরণ
۱ د	একটি সংখ্যা x এর পাঁচগুণ থেকে 25 বিয়োগ করলে বিয়োগফল হবে 190	
21	পুত্রের বর্তমান বয়স y বছর, পিতার বয়স পুত্রের বয়সের চারগুণ এবং তাদের বর্তমান বয়সের সমষ্টি 45 বছর।	y + 4y = 45
७।	একটি আয়তাকার পুকুরের দৈর্ঘ্য x মিটার, দৈর্ঘ্য অপেক্ষা প্রস্থ 3 মিটার কম এবং পুকুরটির পরিসীমা 26 মিটার।	

উদাহরণ ৭। অহনা একটি পরীক্ষায় ইংরেজিতে ও গণিতে মোট 176 নম্বর পেয়েছে এবং ইংরেজি অপেক্ষা গণিতে 10 নম্বর বেশি পেয়েছে। সে কোন বিষয়ে কত নম্বর পেয়েছে?

সমাধান : ধরি, অহনা ইংরেজিতে x নম্বর পেয়েছে। সূতরাং, সে গণিতে পেয়েছে (x+10) নম্বর। সরল সমীকরণ

প্রশ্নমতে,

$$x+x+10=176$$

বা, $2x+10=176$
বা, $2x=176-10$ [পক্ষান্তর করে]
বা, $2x=166$
বা, $\frac{2x}{2}=\frac{166}{2}$ [উভয়পক্ষকে 2 দ্বারা ভাগ করে]
বা, $=83$

$$x + 10 = 83 + 10 = 93$$

∴ অহনা ইংরেজিতে পেয়েছে 83 নম্বর এবং গণিতে পেয়েছে 93 নম্বর।

উদাহরণ ৮। শ্যামল দোকান থেকে কিছু কলম কিনল। সেগুলোর $\frac{1}{2}$ অংশ তার বোনকে ও $\frac{1}{3}$ অংশ তার ভাইকে দিল। তার কাছে আর 5 টি কলম রইল। শ্যামল কয়টি কলম কিনেছিল?

সমাধান : ধরি, শ্যামল x টি কলম কিনেছিল।

x শ্যামল তার বোনকে দেয় x এর $\frac{1}{2}$ টি বা $\frac{x}{2}$ টি কলম এবং তার ভাইকে দেয় x এর $\frac{1}{3}$ টি বা $\frac{x}{3}$ টি কলম ।

শর্তানুসারে,
$$x-\left(\frac{x}{2}+\frac{x}{3}\right)=5$$
 বা, $x-\frac{x}{2}-\frac{x}{3}=5$ বা, $\frac{6x-3x-2x}{6}=5$ [বামপক্ষে হর 2, 3 এর ল.সা.গু. 6] বা, $\frac{x}{6}=5$ বা, $x=5\times 6$ [আড়গুণন করে] বা, $x=30$

শ্যামল 30 টি কলম কিনেছিল।

১১০

উদাহরণ \mathbf{b} । একটি বাস ঘণ্টায় 25 কি.মি. গতিবেগে ঢাকার গাবতলী থেকে আরিচা পৌছাল। আবার বাসটি ঘণ্টায় 30 কি.মি. গতিবেগে আরিচা থেকে গাবতলী ফিরে এলো। যাতায়াতে বাসটির মোট $5\frac{1}{2}$ ঘণ্টা সময় লাগল। গাবতলী থেকে আরিচার দূরতু কত?

সমাধান: মনে করি, গাবতলী থেকে আরিচার দুরতু d কি.মি. ।

$$\therefore$$
 গাবতলী থেকে আরিচা যেতে সময় লাগে $\dfrac{d}{25}$ ঘণ্টা।

আবার আরিচা থেকে গাবতলী ফিরে আসতে সময় লাগে $\frac{d}{30}$ ঘণ্টা।

$$\therefore$$
 যাতায়াতে বাসটির মোট সময় লাগল $\left(rac{d}{25} + rac{d}{30}
ight)$ ঘণ্টা ।

প্রশ্নমতে,
$$\frac{d}{25} + \frac{d}{30} = 5\frac{1}{2}$$
বা, $\frac{6d + 5d}{150} = \frac{11}{2}$
বা, $11d = \frac{75}{150} \times \frac{11}{2}$

বা, d = 75

∴ গাবতলী থেকে আরিচার দূরত 75 কি.মি.।

উদাহরণ ১০। দুটি ধনাত্মক পূর্ণসংখ্যার অন্তর 40 এবং তাদের অনুপাত 1:3.

- ক) সংখ্যা দুটিকে x ও y ধরে সমীকরণ গঠন কর।
- খ) সংখ্যা দুটি নির্ণয় কর।
- গ) সংখ্যা দৃটিকে আয়তক্ষেত্রের দৈর্ঘ্য ও প্রস্থ এর একক মিটারে ধরে আয়তক্ষেত্রটির পরিসীমা ও ক্ষেত্রফল নির্ণয় কর।

সমাধান:

(ক) মনে করি, সংখ্যা দুটি x ও y

স্রল সমীকরণ

(খ) ক থেকে প্রাপ্ত

$$x - y = 40$$
 (i)

$$x = 3y$$
 (ii)

(i) ও (ii) নং থেকে পাই,

$$3y - y = 40$$

বা,
$$2y = 40$$

$$\overline{40}$$
, $y = \frac{40}{2}$

$$\therefore y = 20$$

(ii) নং y=20 বসিয়ে পাই,

$$x = 3 \times 20 = 60$$

$$\therefore x = 60.$$

:. সংখ্যা দুটি 60 ও 20

গ) 'খ' থেকে প্রাপ্ত

সংখ্যা দুটি 60 ও 20।

ধরি, আয়তক্ষেত্রের দৈর্ঘ্য 60 মিটার

. প্রস্থ 20 মিটার

∴ আয়তক্ষেত্রটির পরিসীমা = 2 (দৈর্ঘ্য +প্রস্থ)

= 2(60+20) মিটার

= 2×80 মিটার

=160 মিটার

আয়তক্ষেত্রের ক্ষেত্রফল = দৈর্ঘ্য × প্রস্থ

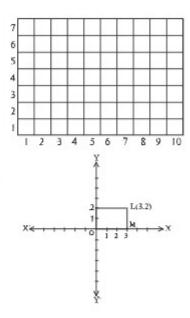
= 1200 ব.মি.

অনুশীলনী ৭.২

নিচের সমস্যাগুলো থেকে সমীকরণ গঠন করে সমাধান কর।

- কোন সংখ্যার দ্বিগুণের সাথে 5 যোগ করলে যোগফল 25 হবে?
- ২। কোন সংখ্যা থেকে 27 বিয়োগ করলে বিয়োগফল -21 হবে?
- ত। কোন সংখ্যার এক-তৃতীয়াংশ 4 এর সমান হবে?
- ৪। কোন সংখ্যা থেকে 5 বিয়োগ করলে বিয়োগফলের 5 গুণ সমান 20 হবে?
- ৫। কোন সংখ্যার অর্ধেক থেকে তার এক-তৃতীয়াংশ বিয়োগ করলে বিয়োগফল 6 হবে?
- ৬। তিনটি ক্রমিক স্বাভাবিক সংখ্যার সমষ্টি 63 হলে, সংখ্যা তিনটি বের কর।
- ৭। দুটি সংখ্যার যোগফল 55 এবং বড় সংখ্যাটির 5 গুণ ছোট সংখ্যাটির 6 গুণের সমান। সংখ্যা
 দুটি নির্ণয় কর।
- ৮। গীতা, রিতা ও মিতার একত্রে 180 টাকা আছে। রিতার চেয়ে গীতার 6 টাকা কম ও মিতার 12 টাকা বেশি আছে। কার কত টাকা আছে?
- ৯। একটি খাতা ও একটি কলমের মোট দাম 75 টাকা। খাতার দাম 5 টাকা কম ও কলমের দাম 2 টাকা বেশি হলে, খাতার দাম কলমের দামের দ্বিগুণ হতো। খাতা ও কলমের কোনটির দাম কত?
- ১০। একজন ফলবিক্রেতার মোট ফলের $\frac{1}{2}$ অংশ আপেল, $\frac{1}{3}$ অংশ কমলালেরু ও $40\,$ টি আম আছে। তাঁর নিকট মোট কতগুলো ফল আছে?
- ১১। পিতার বর্তমান বয়স পুত্রের বর্তমান বয়সের 6 গুণ। 5 বছর পর তাদের বয়সের সমষ্টি হবে 45 বছর। পিতা ও পুত্রের বর্তমান বয়স কত?
- ১২। লিজা ও শিখার বয়সের অনুপাত 2:3। তাদের দুজনের বয়সের সমষ্টি 30 বছর হলে, কার বয়স কত?
- ১৩। একটি ক্রিকেট খেলায় ইমন ও সুমনের মোট রানসংখ্যা 58। ইমনের রানসংখ্যা সুমনের রানসংখ্যার দ্বিগুণের চেয়ে 5 রান কম। ঐ খেলায় ইমনের রানসংখ্যা কত?
- ১৪। একটি ট্রেন ঘণ্টায় 30 কি.মি. বেগে চলে কমলাপুর স্টেশন থেকে নারায়ণগঞ্জ স্টেশনে পৌছাল।
 ট্রেনটির বেগ ঘণ্টায় 25 কি.মি. হলে 10 মিনিট সময় বেশি লাগত। দুই স্টেশনের মধ্যে দূরত কত?
- ১৫। একটি আয়তাকার জমির দৈর্ঘ্য প্রস্থের তিনগুণ এবং জমিটির পরিসীমা 40 মিটার। জমিটির দৈর্ঘ্য ও প্রস্থ নির্ণয় কর।

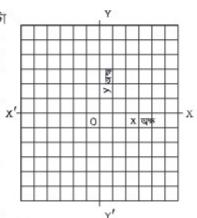
সরল সমীকরণ


লেখচিত্ৰ

৭-৪ স্থানাঙ্কের ধারণা

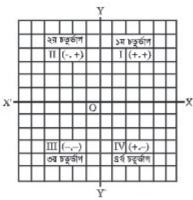
ফ্রান্সের বিখ্যাত গণিতবিদ রেনে দেকার্তে (Rene Descartes 1596–1650) সর্বপ্রথম স্থানাঙ্কের ধারণা দেন। তিনি দুটি পরস্পরছেদী লম্বরেখার সাপেক্ষে বিন্দুর অবস্থান ব্যাখ্যা করেন।

একটি শ্রেণিকক্ষে একক আসনবিন্যাসে একজন শিক্ষার্থীর অবস্থান কোথায় জানতে হলে অনুভূমিক রেখা বা শয়ান রেখা বরাবর কোথায় আছে এবং উল্লম্ব রেখা বা খাড়া রেখা বরাবর কোথায় আছে তা জানা দরকার।


ধরি, শ্রেণিকক্ষে একজন শিক্ষার্থী লিজা (L)-এর অবস্থান জানতে চাই। লিজার অবস্থানকে একটি বিন্দু (\cdot) হিসেবে বিবেচনা করা যায়। চিত্রে লক্ষ করি, লিজা একটি নির্দিষ্ট বিন্দু O থেকে অনুভূমিক রেখা OX বরাবর 3 একক দূরে M বিন্দুতে এবং সেখান থেকে উল্লম্ব রেখা OY এর সমান্তরাল রেখা বরাবর উপরদিকে 2 একক দূরে L বিন্দুতে অবস্থান করছে। তার এ অবস্থানকে (3,2) দ্বারা প্রকাশ করা হয়।

৭-৫ বিন্দু পাতন

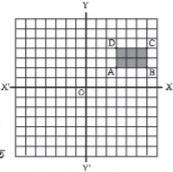
ছক কাগজে সমান দূরে পরস্পরছেদী সমান্তরাল সরলরেখা দ্বারা ছোটো ছোটো বর্গে বিভক্ত করা থাকে। ছক কাগজে কোনো বিন্দুর অবস্থান দেখানোকে বা কোনো বিন্দু স্থাপন করাকে বিন্দু পাতন বলে। বিন্দু পাতনের জন্য সুবিধামতো দুটি পরস্পর লম্ব সরলরেখা নেওয়া হয়। চিত্রে XOX'ও YOY'রেখাদ্বয় পরস্পর লম্বভাবে O বিন্দুতে ছেদ্ করেছে। O বিন্দুকে বলা হয় মূলবিন্দু। অনুভূমিক রেখা XOX' কে x-আক্ষ এবং উল্লম্ব রেখা YOY' কে y-আক্ষ বলা হয়।


প্রধানত ছক কাগজের ক্ষুদ্রতম বর্গক্ষেত্রের বাহুর দৈর্ঘ্যকে একক হিসেবে ধরা হয়। সাধারণভাবে যেকোনো বিন্দুর স্থানাঙ্ককে (x,y) লেখা হয়। x-কে বলা হয় বিন্দুটির x-স্থানাঙ্ক বা ভূজ এবং y-কে বলা হয় বিন্দুটির y-স্থানাঙ্ক বা কোটি। স্পষ্টতই মূলবিন্দু O এর স্থানাঙ্ক হবে (0,0)।

চিত্র : ছককাগজে x অক্ষ ও y অক্ষ

ফর্মা নং-১৫, গণিত-৭ম শ্রেণি

মূলবিন্দু থেকে x-অক্ষের ডানদিক ধনাত্মক দিক ও বামদিক ঋণাত্মক দিক। আবার, মূলবিন্দু থেকে y-অক্ষের উপরের দিক ধনাত্মক দিক ও নিচের দিক ঋণাত্মক দিক। ফলে ছকটি অক্ষন্ধয় দ্বারা চারটি ভাগে বিভক্ত হয়েছে। এইভাগ চারটি ঘড়ির কাঁটার ঘূর্ণনের বিপরীত দিক অনুযায়ী ১ম, ২য়, ৩য় ও ৪র্থ চতুর্ভাগ হিসেবে পরিচিত। প্রথম চতুর্ভাগে যেকোনো বিন্দুর x স্থানাম্ভ উভয়ই ধনাত্মক, দ্বিতীয় চতুর্ভাগে যেকোনো বিন্দুর x স্থানাম্ভ ঋণাত্মক ও y স্থানাম্ভ ঋণাত্মক ও y স্থানাম্ভ ঋণাত্মক এবং চতুর্থ চতুর্ভাগে যেকোনো বিন্দুর x স্থানাম্ভ ঋণাত্মক ও y স্থানাম্ভ ঋণাত্মক এবং চতুর্থ চতুর্ভাগে যেকোনো বিন্দুর x স্থানাম্ভ ঋণাত্মক ও y স্থানাম্ভ ঋণাত্মক এবং চতুর্থ চতুর্ভাগে যেকোনো বিন্দুর x স্থানাম্ভ ঋণাত্মক ও y স্থানাম্ভ


চিত্র : x ও y স্থানাঙ্কে চিহ্ন নির্ধারণ

পূর্বের অনুচেছদে আলোচিত লিজার অবস্থান (3,2) নির্ণয় করার জন্য প্রথমে x-অক্ষ বরাবর ডানদিকে 3 একক দূরত্বে যেতে হবে। তারপর সেখান থেকে খাড়া উপর দিকে 2 একক দূরত্বে যেতে হবে। তা হলে লিজার অবস্থান L বিন্দুর স্থানাঙ্ক হবে (3,2)। অনুরূপভাবে চিত্রে P বিন্দুর স্থানাঙ্ক (-2,4)।

উদাহরণ ১। ছক কাগজে নিচের প্রথম চারটি বিন্দু স্থাপন করে তীর চিহ্ন অনুযায়ী যোগ কর: (3, 2) → (6, 2) → (6, 4) → (3, 4)। চিত্রটির জ্যামিতিক আকৃতি কী হবে?

সমাধান : ধরি, বিন্দু চারটি যথাক্রমে A,B,C,D । অর্থাৎ.

A(3,2), B(6,2), C(6,4) এবংD(3,4) । ছক কাগজে উভয় অক্ষে কুদ্রতম বর্গক্ষেত্রের প্রতি বাহুর দৈর্ঘ্যকে একক ধরি । A বিন্দুটি স্থাপন করতে

মূলবিন্দু O থেকে x -অক্ষের ডানদিক বরাবর 3টি ছোট বর্গের বাহুর সমান দূরে গিয়ে উপরের দিকে 2টি ছোটো বর্গের বাহুর সমান উঠে গেলে যে বিন্দুটি পাওয়া যাবে, তা A বিন্দু । অনুরূপভাবে প্রদন্ত অবশিষ্ট বিন্দুসমূহ স্থাপন করি । তারপর $A \to B \to C \to D \to A$ এভাবে বিন্দুগুলো যোগ করি । এতে ABCD চিত্রটি পাওয়া গেল । দেখা যায় যে, ABCD চিত্রটি একটি আয়ত ।

চিত্র থেকে তোমরা Q,R,S,T বিন্দুর স্থানান্ধ নির্ণয়					Y	8			
কর।	-		\blacksquare		1	H		S	\exists
	Ė	T	+	+	+	#	H		
	x								\exists_{x}
	-	+	0	+	0	Ħ	Ħ	+	=
	1				-				\exists
	E	+	\pm		+	R	\mathbb{H}		\exists
					Ý,				

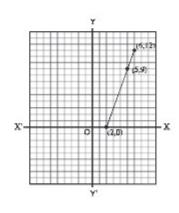
সরল সমীকরণ ১১৫

৭.৬ লেখচিত্রে সমীকরণের সমাধান

লেখচিত্রের সাহায্যে সহজেই সমীকরণের সমাধান বের করা যায়। মনে করি, 2x-5=0 সমীকরণিট সমাধান করতে হবে। সমীকরণের বামপক্ষ 2x-5 রাশিতে x-এর বিভিন্ন মান বসালে রাশিটির বিভিন্ন মান পাওয়া যায়। লেখচিত্রে প্রতিটি x কে ভুজ এবং রাশিটির মানকে কোটি ধরে একটি করে বিন্দু পাওয়া যাবে। বিন্দুগুলো যোগ করে একটি সরলরেখা অঙ্কিত হবে। সরলরেখাটি যে বিন্দুতে x অক্ষকে ছেদ করে, সেই বিন্দুর ভুজেই নির্ণেয় সমাধান। কেননা, x-এর এই মানের জন্য রাশিটির মান x=10 হয়, যা সমীকরণের ডানপক্ষের মানের সমান হয়। এ ক্ষেত্রে সমীকরণিটির সমাধান x=10

উদাহরণ ২ । 3x - 6 = 0 সমাধান কর এবং লেখচিত্রে সমাধান প্রদর্শন কর ।

সমাধান :
$$3x - 6 = 0$$


বা,
$$3x = 6$$
 [পক্ষান্তর করে]

বা,
$$\frac{3x}{3} = \frac{6}{3}$$
 [উভয়পক্ষকে 3 দ্বারা ভাগ করে]

$$a$$
t, $x=2$

লেখচিত্র অঙ্কন : প্রদত্ত সমীকরণ 3x - 6 = 0 x এর কয়েকটি মান নিয়ে 3x - 6 এর অনুরূপ মান বের করি এবং নিচের ছকটি তৈরি করি :

x	3x-6	(x, 3x-6)
2	0	(2,0)
5	9	(5,9)
6	12	(6,12)

লেখচিত্র অন্ধনের জন্য তিনটি বিন্দু (2,0),(5,9) ও (6,12) নেওয়া হলো। মনে করি, পরস্পর লম্ব রেখা XOX' ও YOY' যথাক্রমে x-অক্ষ ও y-অক্ষ এবং O মূলবিন্দু। ছক কাগজে উভয় অক্ষে ক্ষুদ্রতম বর্গক্ষেত্রের এক বাহুর দৈর্ঘ্যকে একক ধরে (2,0),(5,9), (6,12) বিন্দুগুলো স্থাপন করি। তারপর বিন্দুগুলো পরপর সংযোগ করি। লেখচিত্রে একটি সরলরেখা পাই। সরলরেখাটি x-অক্ষকে (2,0) বিন্দুতে ছেদ করে। বিন্দুটির ভুজ হলো 2। সুতরাং প্রদন্ত সমীকরণের সমাধান x=2।

উদাহরণ ৩। লেখচিত্রের সাহায্যে সমাধান কর: 3x-4=-x+4

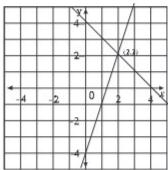
সমাধান : প্রদত্ত সমীকরণ 3x - 4 = -x + 4

x এর কয়েকটি মান নিয়ে 3x-4 এর অনুরূপ মান বের করি এবং পাশের ছক-১ তৈরি করি:

∴ 3x-4 এর লেখের উপর তিনটি বিন্দু (0,-4), (2, 2), (4, 8) निই।

Х	3x-4	(x, 3x-4)
0	-4	(0, -4)
2	2	(2, 2)
4	8	(4,8)

ছক-১


আবার, x এর কয়েকটি মান নিয়ে -x+4 এর অনুরূপ মান বের করি এবং পাশের ছক-২ তৈরি করি : ∴ -x+4 এর লেখের উপর তিনটি বিন্দু (0,4),(2,2), (4,0) নিই।

মনে করি, পরস্পর লম্ব রেখা XOX' ও YOY' যথাক্রমে x-অক্ষ ও y -অক্ষ এবং O মূলবিন্দু। এখন, ছক-১ এ প্রাপ্ত (0, -4), (2, 2), (4, 8) বিন্দু তিনটি স্থাপন করি এবং এদের পরপর সংযোগ করি।

x	-x+4	(x, -x+4)
0	4	(0, 4)
2	2	(2, 2)
4	0	(4,0)

লেখচিত্রে একটি সরলরেখা পাই। আবার, ছক-২এ প্রাপ্ত

(0,4),(2,2), (4,0) বিন্দু তিনটি স্থাপন করি ও এদের পরপর সংযোগ করি। এক্ষেত্রেও লেখচিত্রে একটি সরলরেখা পাই।

লক্ষ করি, সরলরেখা দুটি পরস্পর (2,2) বিন্দুতে ছেদ করেছে। ছেদবিন্দুতে 3x-4 ও -x+4 এর মান পরস্পর সমান। সুতরাং, প্রদত্ত সমীকরণের সমাধান হলো (2,2) বিন্দুতে ভূজের মান, অর্থাৎ x=2।

কাজ : নিচের সমীকরণগুলোর সমাধানের লেখচিত্র আঁক।

$$3 + 2x - 1 = 0$$
 $3 + 3x + 5 = 2$

অনুশীলনী ৭-৩

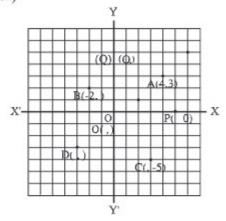
১।
$$\frac{x}{3} - 3 = 0$$
 সমীকরণের মূল নিচের কোনটি?

সরল সমীকরণ

२।	একটি ত্রিভুজের	বাহু তিনটির হৈ	দর্ঘ্য (x + 1)	সে.মি., $(x+2)$	সে.মি. ও $(x+3)$	সে.মি.
	(x > 0) । ত্রিভূব	জটির পরিসীমা 1 <i>5</i>	সে.মি. হলে,	χ এর মান কত?		
	(ক) 3 সে.মি.	(খ) 6 সে.মি.	(গ) 8 সে.বি	ম. (ঘ) 9 সে.মি		

- ৩। কোন সংখ্যার এক-চতুর্থাংশ 4 এর সমান হবে?
 - (4) 16 (4) 4 (7) $\frac{1}{4}$ (7) $\frac{1}{16}$
- 8 । (2,-2) বিন্দুটি কোন চতুর্ভাগে অবস্থিত?
 - (ক) প্রথম (খ) দ্বিতীয়
 - (গ) তৃতীয় (ঘ) চতুর্থ
- ৫। y অক্ষ বরাবর কোন বিব্দুর ভুজ কত?
 - (a) 0
 - (গ) x (되) y
- ৬। দুটি সংখ্যার বিয়োগফল y, বড়ো সংখ্যাটি z হলে, ছোটো সংখ্যাটি কত?

(약) 1


 $\frac{1}{3}$

- $\overline{y}) \quad z y \qquad (\forall) \quad z + y$
- $(\mathfrak{N}) \quad -y-z \qquad \qquad (\mathfrak{A}) \quad -z+y$
- ৭। $\frac{ab}{xy}$ এর সমতুল ভগ্নাংশ নিচের কোনটি?
 - $\frac{abc}{xyz} \qquad \qquad (4) \qquad \frac{a^2b}{x^2y}$
 - (গ) $\frac{2ab}{2xy}$ (ঘ) $\frac{ab^2}{xy^2}$
- ৮। 3x+1=0 সমীকরণের ঘাত কত?
 - $-\frac{1}{3}$ (*
 - (গ) 1 (ঘ)
- ৯। কোন সংখ্যার সাথে 5 যোগ করলে 15 হবে?
 - (季) -20
 (**) 10

 (**) -10
 (**) 20
- ১০। x এর কোন মান 4x + 1 = 2x + 7 সমীকরণকে সিদ্ধ করে?
 - (4) 2
 - (গ) 3 (ঘ) 4

১১। চিত্র থেকে নিচের ছকটি পুরণ কর: (উভয় অক্ষে ক্ষুদ্রতম বর্গক্ষেত্রের বাহুর দৈর্ঘ্যকে একক ধরে)

বিন্দু	স্থানান্ধ
A	(4, 3)
B	(-2,)
C	(,-5)
D	(,)
0	(,)
P	(,0)
Q	(0,)

১২। নিচের বিন্দুগুলো ছক কাগজে স্থাপন করে তীরচিহ্ন অনুযায়ী যোগ কর ও চিত্রটির জ্যামিতিক নামকরণ

$$(\overline{+})$$
 $(2,2) \to (6,2) \to (6,6) \to (2,6) \to (2,2)$

$$(4) (0,0) \rightarrow (-6,-6) \rightarrow (8,6) \rightarrow (0,0)$$

১৩। সমাধান কর এবং সমাধান লেখচিত্রে দেখাও।

$$(\overline{\Phi}) x - 4 = 0$$

(*)
$$2x + 4 = 0$$

$$(9) x + 3 = 8$$

(a)
$$2x + 1 = x - 3$$
 (b) $3x + 4 = 5x$

(8)
$$3x + 4 = 5x$$

১৪। একটি ত্রিভুজের তিন বাহুর দৈর্ঘ্য (x+2) সে.মি., (x+4) সে.মি. ও (x+6) সে.মি. (x>0)

এবং ত্রিভুজটির পরিসীমা 18 সে.মি.।

- ক. প্রদত্ত শর্তানুযায়ী আনুপাতিক চিত্র আঁক।
- খ, সমীকরণ গঠন করে সমাধান কর।
- সমাধানের লেখচিত্র আঁক।

১৫। ঢাকা ও আরিচার মধ্যবর্তী দূরত 77 কি.মি.। একটি বাস ঘণ্টায় 30 কি.মি. বেগে ঢাকা থেকে আরিচার পথে রওনা দিল। অপর একটি বাস ঘণ্টায় 40 কি.মি. বেগে আরিচা থেকে ঢাকার পথে একই সময়ে রওনা দিল ও বাস দুটি ঢাকা থেকে x কি.মি. দূরে মিলিত হলো।

ক. বাস দুটি আরিচা থেকে কত দুরে মিলিত হবে তা x এর মাধ্যমে প্রকাশ কর।

- খ. x এর মান নির্ণয় কর।
- গ. গন্তব্যস্থানে পৌছাতে কোন বাসের কত সময় লাগবে?

অষ্টম অধ্যায়

সমান্তরাল সরলরেখা

দৈনন্দিন জীবনে আমাদের চারপাশে যা কিছু দেখি ও ব্যবহার করি এর কিছু চারকোনা, কিছু গোলাকার। আমাদের ঘরবাড়ি, দালানকোঠা, দরজা-জানালা, খাট-আলমারি, টেবিল-চেয়ার, বই-খাতা ইত্যাদি সবই চারকোনা। এদের ধারগুলো সরলরেখা হিসেবে বিবেচনা করলে দেখা যায় যে, এরা সমদূরবর্তী বা সমান্তরাল।

অধ্যায় শেষে শিক্ষার্থীরা —

- সমান্তরাল সরলরেখা ও ছেদক দ্বারা উৎপন্ন কোণের বৈশিষ্ট্য ব্যাখ্যা করতে পারবে।
- দুটি সরলরেখা সমান্তরাল হওয়ার শর্ত বর্ণনা করতে পারবে।
- দুটি সরলরেখা সমান্তরাল হওয়ার শর্ত প্রমাণ করতে পারবে।

৮-১ জ্যামিতিক যুক্তি পদ্ধতি

প্রতিজ্ঞা: জ্যামিতিতে যে সকল বিষয়ের আলোচনা করা হয়, সাধারণভাবে তাদের প্রতিজ্ঞা বলা হয়।
সম্পাদ্য: যে প্রতিজ্ঞায় কোনো জ্যামিতিক বিষয় অঙ্কন করে দেখানো হয় এবং যুক্তি দ্বারা অঙ্কনের
নির্ভূলতা প্রমাণ করা যায়, একে সম্পাদ্য বলা হয়।
সম্পাদ্যের বিভিন্ন অংশ:

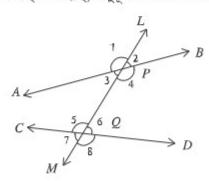
- (ক) উপাত্ত: সম্পাদ্যে যা দেওয়া থাকে, তাই উপাত্ত।
- (খ) অঙ্কন : সম্পাদ্যে যা করণীয়, তাই অঙ্কন।
- (গ) প্রমাণ : যুক্তি দ্বারা অঙ্কনের নির্ভুলতা যাচাই হলো প্রমাণ।

উপপাদ্য : যে প্রতিজ্ঞায় কোনো জ্যামিতিক বিষয়কে যুক্তি দ্বারা প্রতিষ্ঠিত করা হয়, একে উপপাদ্য বলে। উপপাদ্যের বিভিন্ন অংশ:

- (ক) সাধারণ নির্বচন: এ অংশে প্রতিজ্ঞার বিষয়টি সরলভাবে বর্ণনা করা হয়।
- (খ) বিশেষ নির্বচন: এ অংশে প্রতিজ্ঞার বিষয়টি চিত্র দ্বারা বিশেষভাবে দেখানো হয়।
- (গ) অঙ্কন: এ অংশে প্রতিজ্ঞা সমাধানের বা প্রমাণের জন্য অতিরিক্ত অঙ্কন করতে হয়।
- (ঘ) প্রমাণ: এ অংশে স্বতঃসিদ্ধগুলো এবং পূর্বে গঠিত জ্যামিতিক সত্য ব্যবহার করে উপযুক্ত যুক্তি দ্বারা প্রস্তাবিত বিষয়টিকে প্রতিষ্ঠিত করা হয়।

অনুসিদ্ধান্ত: কোনো জ্যামিতিক প্রতিজ্ঞা প্রতিষ্ঠিত করে এর সিদ্ধান্ত থেকে এক বা একাধিক যে নতুন সিদ্ধান্ত গ্রহণ করা যায়, এদেরকে অনুসিদ্ধান্ত বলা হয়।

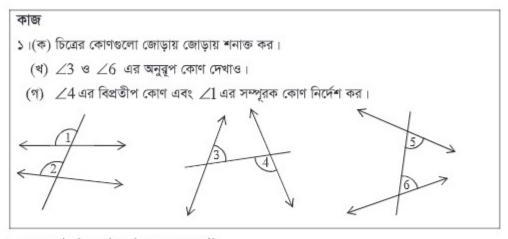
আধুনিক যুক্তিমূলক জ্যামিতির আলোচনার জন্য কিছু মৌলিক স্বীকার্য, সংজ্ঞা ও চিহ্নের প্রয়োজন হয়।


১২০

জ্যামিতিতে ব্যবহৃত চিহ্নসমূহ

চিহ্ন	অর্থ	চিহ্ন	অর্থ
+	যোগ	_	কোণ
=	সমান	上	बस
>	বৃহত্তর	Δ	ত্রিভূজ
<	<u> স্</u> দ্রতর	\odot	বৃত্ত
≅	সর্বসম	::	যেহেতু
П	সমান্তরাল	<i>:</i> .	সুতরাং , অতএব

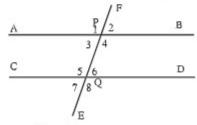
৮.২ ছেদক


কোনো সরলরেখা দুই বা ততোধিক সরলরেখাকে বিভিন্ন বিন্দুতে ছেদ করলে একে ছেদক বলে । চিত্রে, AB ও CD দুটি সরলরেখা এবং LM সরলরেখাগুলোকে যথাক্রমে দুটি ভিন্ন বিন্দু P,Q তে ছেদ করেছে । LM সরলরেখা AB ও CD সরলরেখাদ্বরের ছেদক । ছেদকটি AB ও CD সরলরেখা দুইটির সাথে মোট আটটি কোণ তৈরি করেছে । কোণগুলোকে $\angle 1$, $\angle 2$, $\angle 3$, $\angle 4$, $\angle 5$, $\angle 6$, $\angle 7$, $\angle 8$ দ্বারা নির্দেশ করি । কোণগুলোকে অন্তঃস্থ ও বহিঃস্থ , অনুরূপ ও একান্তর এই চার শ্রেণিতে ভাগ করা যায় ।

অভঃস্থ কোণ	∠3,∠4,∠5,∠6
বহিঃস্থ কোণ	∠1,∠2,∠7,∠8
অনুরূপ কোণ জোড়া	∠1 এবং ∠5,∠2 এবং∠6
	∠3 এবং ∠7 ,∠4 এবং∠8
অন্তঃস্থ একান্তর কোণ জোড়া	∠3 এবং ∠6,∠4 এবং∠5
বহিঃস্থ একান্তর কোণ জোড়া	∠1 এবং ∠8,∠2 এবং∠7
ছেদকের একই পাশের অন্তঃস্থ কোণ জোড়া	∠3 ववং ∠5,∠4 ववং∠6

সমান্তরাল সরলরেখা ১২১

অনুরূপ কোণগুলোর বৈশিষ্ট্য: (ক) কোণের কৌণিক বিন্দু আলাদা (খ) ছেদকের একই পাশে অবস্থিত। একান্তর কোণগুলোর বৈশিষ্ট্য: (ক) কোণের কৌণিক বিন্দু আলাদা (খ) ছেদকের বিপরীত পাশে অবস্থিত (গ) সরলরেখা দুটির মধ্যে অবস্থিত।


৮.৩ জোড়া সমান্তরাল সরলরেখা

আমরা জেনেছি যে, একই সমতলে অবস্থিত দুটি সরলরেখা একে অপরকে ছেদ না করলে সেগুলো সমান্তরাল সরলরেখা। দুটি সমান্তরাল সরলরেখা থেকে যেকোনো দুটি রেখাংশ নিলে, রেখাংশ দুটিও পরস্পর সমান্তরাল হয়। দুটি সমান্তরাল সরলরেখার একটির যেকোনো বিন্দু থেকে অপরটির লম্দূরত্ব সর্বদা সমান। আবার দুটি সরলরেখার একটির যেকোনো দুটি বিন্দু থেকে অপরটির লম্মূরত্ব সর্বদা সমান হলেও রেখাদ্বয় সমান্তরাল। এই লম্মূরত্বকে দুটি সমান্তরাল রেখাদ্বয়ের দূরত্ব বলা হয়। lও m দুটি সমান্তরাল সরলরেখা।

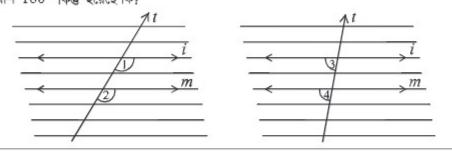
লক্ষ করি, কোনো নির্দিষ্ট সরলরেখার উপর অবস্থিত নয় এরূপ বিন্দুর মধ্য দিয়ে ঐ সরলরেখার সমান্তরাল করে একটি মাত্র সরলরেখা আঁকা যায়।

৮.৪ সমান্তরাল সরলরেখার ছেদক দ্বারা উৎপন্ন কোণসমূহ

উপরের চিত্রে, AB ও CD দুটি সমান্তরাল সরলরেখা এবং EF সরলরেখাগুলোকে যথাক্রমে দুটি বিন্দু P ও Q তে ছেদ করেছে। EF সরলরেখা AB ও CD সরলরেখাদ্বরের ছেদক। ছেদকটি AB ও CD সরলরেখা দুটির সাথে $\angle 1$, $\angle 2$, $\angle 3$, $\angle 4$, $\angle 5$, $\angle 6$, $\angle 7$, $\angle 8$ মোট আটটি কোণ তৈরি ফর্মা নং-১৬, গণিত-৭ম শ্রেণি

করেছে। এ কোণগুলোর মধ্যে

(ক) ∠1 এবং ∠5, ∠2 এবং ∠6, ∠3 এবং ∠7, ∠4 এবং ∠8 পরস্পর অনুরূপ কোণ।


- (খ) ∠3 এবং ∠6,∠4 এবং∠5 হলো পরস্পর একান্তর কোণ।
- (গ) ∠3,∠4,∠5,∠6 অন্তঃস্থ কোণ।

এই একান্তর ও অনুরূপ কোণগুলোর মধ্যে সম্পর্ক রয়েছে। এই সম্পর্ক বের করার জন্য দলগতভাবে নিচের কাজটি কর।

কাজ :

১। রুলটানা একপৃষ্ঠা কাগজে চিত্রের ন্যায় দুটি সমান্তরাল সরলরেখা ও এদের একটি ছেদক আঁক। দুই জোড়া অনুরূপ কোণ চিহ্নিত কর। প্রতিজোড়া অনুরূপ কোণ সমান কিনা যাচাই কর। সমান হয়েছে কি?

২। দুই জোড়া একান্তর কোণ চিহ্নিত কর। প্রতি জোড়া একান্তর কোণ সমান কিনা যাচাই কর। সমান হয়েছে কি? ৩। সমান্তরাল সরলরেখাদ্বয়ের ছেদকের একই পাশের অন্তঃস্থ কোণ দুটি পরিমাপ কর। কোণ দুটির পরিমাপের যোগফল বের কর। যোগফল তোমার সহপাঠীদের বের করা যোগফলের সাথে তুলনা কর। তোমাদের যোগফল সামান্য কম-বেশি 180° কিন্তু হয়েছে কি?

কাজের ফলাফল পর্যালোচনা করে আমরা নিচের সিদ্ধান্তে উপনীত হই:

- দুটি সমান্তরাল সরলরেখার একটি ছেদক দ্বারা উৎপন্ন প্রত্যেক অনুরূপ কোণ জোড়া সমান হবে ।
- দুটি সমান্তরাল সরলরেখার একটি ছেদক দ্বারা উৎপন্ন প্রত্যেক একান্তর কোণ জোড়া সমান হবে ।
- দুটি সমান্তরাল সরলরেখার একটি ছেদক দ্বারা উৎপন্ন ছেদকের একই পাশের অন্তঃস্থ কোণ দুটি পরস্পর সম্পরক।

সমান্তরাল সরলরেখার এই তিনটি ধর্ম (property) আলাদাভাবে প্রমাণ করা যায় না। এরা প্রত্যেকেই ইউক্লিডের ৫ম স্বীকার্যের বিভিন্ন রূপ। এদের যেকোনো একটিকে সমান্তরাল সরলরেখার সংজ্ঞা হিসেবে বিবেচনা করলে বাকি দুটি ধর্ম ব্যাখ্যা করা যায়। অর্থাৎ, যদি এই তিনটি ধর্মের যেকোনো একটিকে সত্য ধরে অপর দুটি ধর্মকে ব্যাখ্যা করা যায়, তবে প্রথমে বিবেচিত সংজ্ঞাটিকে আমরা সঠিক বলে ধরে নিতে পারি।

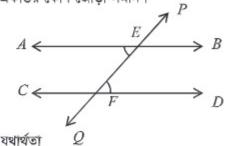
সমান্তরাল সরলরেখার একটি ধর্ম: দুটি সমান্তরাল সরলরেখার একটি ছেদক দ্বারা উৎপন্ন প্রত্যেক অনুরূপ কোণ জোড়া সমান-কে সত্য ধরে নিয়ে সমান্তরাল সরলরেখার আরেকটি ধর্মকে নিচে ব্যাখ্যা করা হলো।

দুটি সমান্তরাল সরলরেখার একটি ছেদক দ্বারা উৎপন্ন একান্তর কোণের সম্পর্ক:

সমান্তরাল সরলরেখা ১২৩

উপপাদ্য ১

দুটি সমান্তরাল সরলরেখাকে একটি সরলরেখা ছেদ করলে একান্তর কোণ জোড়া সমান।


वित्नंब निर्वेष्ठन : মনে করি, $AB \parallel CD$ এবং PQ ছেদক তাদের যথাক্রমে $E \otimes F$ বিন্দৃতে ছেদ করেছে । প্রমাণ করতে হবে যে, $\angle AEF =$ একান্তর $\angle EFD$ ।

প্রমাণ:

ধাপ:

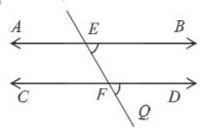
- (১) ∠PEB = অনুরূপ ∠EFD
- (২) ∠PEB = বিপ্রতীপ ∠AEF

 \therefore $\angle AEF = \angle EFD$ [প্রমাণিত]

[সমান্তরাল রেখার সংজ্ঞানুসারে অনুরূপ কোণ সমান] [বিপ্রতীপ কোণছয় পরস্পর সমান]

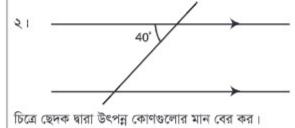
[(১) ও (২) থেকে]

কাজ


১। প্রমাণ কর যে, দুটি সমান্তরাল সরলরেখার একটি ছেদক দ্বারা উৎপন্ন ছেদকের একই পাশের অন্তস্থ কোণদ্বয়ের সমস্টি দুই সমকোণের সমান।

চিত্রে, $AB \parallel CD$ এবং PQ ছেদক তাদের যথাক্রমে Eও

F বিন্দুতে ছেদ করেছে।


সুতরাং, (ক) $\angle PEB =$ অনুরূপ $\angle EFD$

- (খ) *∠AEF* = একান্তর *∠EFD*
- (গ) $\angle BEF + \angle EFD =$ দুই সমকোণ।

কাজ

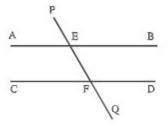
১। একটি সরলরেখার উপর দুটি বিন্দু নাও। রেখাটির বিন্দু দুটিতে একই দিকে 60° এর সমান দুটি কোণ আঁক। কোণদ্বয়ের অঙ্কিত বাহু দুটি সমান্তরাল কিনা যাচাই কর।

70*

কাজের ফলাফল পর্যালোচনা করে আমরা নিচের সিদ্ধান্তে উপনীত হই:

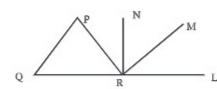
- দুটি সরলরেখা অপর একটি সরলরেখাকে ছেদ করলে যদি অনুরূপ কোণগুলো পরস্পর সমান হয়, তবে ঐ সরলরেখা
 দুটি পরস্পর সমান্তরাল।
- দুটি সরলরেখা অপর একটি সরলরেখাকে ছেদ করলে যদি একান্তর কোণগুলো পরস্পর সমান হয়, তবে ঐ
 সরলরেখা দুটি পরস্পর সমান্তরাল।
- দুটি সরলরেখা অপর একটি সরলরেখাকে ছেদ করলে যদি ছেদকের একই পাশের অন্তঃস্থ কোণ দুটির
 সমষ্টি দুই সমকোণের সমান হয়, তবে ঐ সরলরেখা দুটি পরস্পর সমান্তরাল।

128


গণিত

চিত্রে, ABও CDরেখাদ্বয়কে PQ রেখা যথাক্রমে Eও F বিন্দুতে ছেদ করেছে এবং

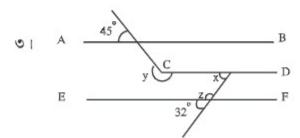
অথবা, (খ) $\angle PEB =$ অনুরূপ $\angle EFD$


অথবা, (গ) $\angle BEF + \angle EFD =$ দুই সমকোণ।

সূতরাং, ABও CD রেখা দুটি পরস্পর সমান্তরাল।


অনুশীলনী ৮

21



চিত্রে, $\angle PQR = 55^\circ$, $\angle LRN = 90^\circ$ এবং $PQ \mid \mid MR$ হলে, $\angle MRN$ এর মান নিচের কোনটি? ক. 35° খ. 45° গ. 55° ঘ. 90°

२।

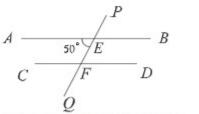
চিত্র, $PQ \parallel SR$, PQ = PR এবং $\angle PRQ = 50^\circ$ হলে, $\angle LRS$ এর মান নিচের কোনটি? ক. 80^0 খ. 75° গ. 55° ঘ. 50°

AB || CD || EF

সমান্তরাল সরলরেখা 256

(১) ∠ x এর মান নিচের কোনটি?

ক. 28° খ. 32° গ. 45° ঘ. 58°


(২) $\angle z$ এর মান নিচের কোনটি?

क. 58° ₹. 103°

গ. 122° ঘ. 148°

(৩) নিচের কোনটি y-z এর মান?

ক. 58° খ. 77° গ. 103° ঘ. 122°

 $AB \parallel CD$

চিত্রের তালোকে ৪ এবং ৫ নম্বর প্রশ্নের উত্তর দাও।

8 | ∠PEA = কত ডিগ্রি?

(40°

(₹) 50°

(গ) 90°

(ঘ) 130°

৫। ∠EFD এর মান কত?

(季) 30°

(박) 40°

(গ) 50°

(^덕) 90°

ABC ত্রিভুজে $\angle B + \angle C = 90^\circ$ হলে $\angle A =$ কত ডিগ্রি?

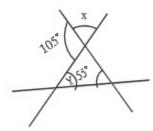
(季) 90°

(4) 110°

(গ) 120°

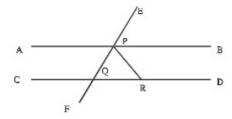
(ঘ) 160°

(ক) সমান


(খ) সর্বসম

(গ) সমান্তরাল

(ঘ) লম্ব


256

নিচের তথ্যের আলোকে ৮ ও ৯ নং প্রশ্নের উত্তর দাও।

- ৮। $x = \overline{\Phi}$ ত?
 - (季) 75°
- (₹) 55°
- (গ) 50°
- (되) 45°
- $b \mid x + y = \Phi \sigma$?
 - (季) 160°
- (학) 125°
- (a) 100°
- (되) 85°

106

চিত্রে, ABIICD, ∠BPE = 60° এবং PQ = PR.

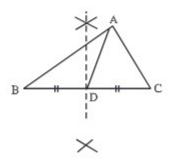
- ক. দেখাও যে, $\frac{1}{2} \angle APE = 60^\circ$
- খ. ∠CQF এর মান বের কর।
- গ. প্রমাণ কর যে, PQR একটি সমবাহু ত্রিভুজ।

গণিত

নবম অধ্যায়

ত্রিভুজ

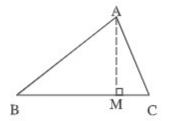
[এই অধ্যায়ের প্রয়োজনীয় পূর্বজ্ঞান বইয়ের শেষে পরিশিষ্ট অংশে সংযুক্ত আছে। প্রথমে পরিশিষ্ট অংশ পাঠ/আলোচনা করতে হবে।]


আমরা জেনেছি, তিনটি রেখাংশ দ্বারা আবদ্ধ ক্ষেত্রের সীমারেখাকে ত্রিভুজ বলা হয় এবং রেখাংশগুলোকে ত্রিভুজের বাহু বলে। যেকোনো দুটি বাহুর সাধারণ বিন্দুকে শীর্ষবিন্দু বলা হয়। দুটি বাহু শীর্ষবিন্দুতে যে কোণ উৎপন্ন করে তা ত্রিভুজের একটি কোণ। ত্রিভুজের তিনটি বাহু ও তিনটি কোণ আছে। বাহুভেদে ত্রিভুজ তিন প্রকার: সমবাহু, সমদ্বিবাহু ও বিষমবাহু। আবার কোণভেদেও ত্রিভুজ তিন প্রকার: সুক্ষকোণী, স্কুলকোণী ও সমকোণী। ত্রিভুজের বাহু তিনটির দৈর্ঘ্যের সমষ্টিকে ত্রিভুজের পরিসীমা বলা হয়। এর আলোকে ত্রিভুজের অন্যান্য বৈশিষ্ট্য এবং ত্রিভুজ সংক্রান্ত মৌলিক উপপাদ্য ও অন্ধন বিষয়ে আলোচনা করা হয়েছে।

অধ্যায় শেষে শিক্ষার্থীরা —

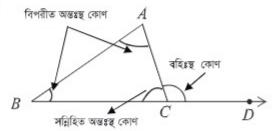
- ত্রিভুজের অন্তঃস্থ ও বহিঃস্থ কোণ বর্ণনা করতে পারবে।
- ত্রিভুজের মৌলিক উপপাদ্যগুলো প্রমাণ করতে পারবে ।
- বিভিন্ন শর্তসাপেক্ষে ত্রিভুজ আঁকতে পারবে ।
- ≽ ব্রিভুজের বাহু ও কোণের পারস্পরিক সম্পর্ক ব্যবহার করে জীবনভিত্তিক সমস্যার সমাধান করতে পারবে।
- ত্রিভুজক্ষেত্রের ভূমি ও উচ্চতা মেপে ক্ষেত্রফল পরিমাপ করতে পারবে।

৯-১ ত্রিভুজের মধ্যমা


পাশের চিত্রে, ABC একটি ত্রিভুজ । A,B,C ত্রিভুজটির তিনটি শীর্ষবিন্দু । AB,BC,CA ত্রিভুজটির তিনটি বাহু এবং $\angle A, \angle B, \angle C$ তিনটি কোণ । ত্রিভুজটির যেকোনো একটি বাহু BC এর মধ্যবিন্দু D নির্ণয় করি এবং D হতে বিপরীত শীর্ষবিন্দু A পর্যন্ত রেখাংশ আঁকি । AD, ABC ত্রিভুজের একটি মধ্যমা ।

ত্রিভুজের শীর্ষবিন্দু থেকে বিপরীত বাহুর মধ্যবিন্দু পর্যন্ত অঙ্কিত রেখাংশ মধ্যমা।

৯-২ ত্রিভুজের উচ্চতা


পাশের চিত্রে, ABC একটি ত্রিভুজ। A শীর্ষবিন্দু হতে বিপরীত বাহ্ BC এর লম্ব দূরত্বই ত্রিভুজের উচ্চতা। A হতে BC এর উপর লম্ব AM অন্ধন করি। AM, ABC ত্রিভুজের উচ্চতা। এভাবে প্রত্যেক শীর্ষবিন্দু হতে ত্রিভুজের উচ্চতা নির্ণয় করা যায়।

৯-৩ ত্রিভুজের বহিঃস্থ ও অন্তঃস্থ কোণ

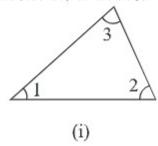
কোনো ত্রিভুজের একটি বাহু বর্ধিত করলে যে কোণ উৎপন্ন হয় তা ত্রিভুজটির একটি বহিঃস্থ কোণ। এই কোণের সন্নিহিত কোণটি ছাড়া ত্রিভুজের অপর দুটি কোণকে এই বহিঃস্থ কোণের বিপরীত অন্তঃস্থ কোণ বলা হয়।

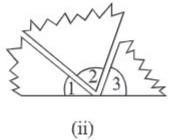
পাশের চিত্রে, $\triangle ABC$ এর BC বাহুকে D পর্যন্ত বর্ধিত করা হয়েছে। $\angle ACD$ ত্রিভুজটির একটি বহিঃস্থ কোণ। $\angle ABC$, $\angle BAC$ ও $\angle ACB$ ত্রিভুজটির তিনটি অন্তঃস্থ কোণ। $\angle ACB$ কে $\angle ACD$ এর পরিপ্রেক্ষিতে সন্নিহিত অন্তঃস্থ কোণ বলা হয়। $\angle ABC$ ও $\angle BAC$ এর প্রত্যেককে $\angle ACD$

কাজ

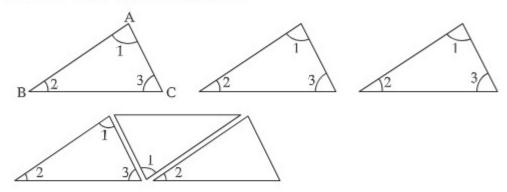
১ । ত্রিভুজের কয়টি মধ্যমা? কয়টি উচ্চতা?

এর বিপরীত অন্তঃস্থ কোণ বলা হয়।


- ২। মধ্যমা ও উচ্চতা কি সর্বদাই ত্রিভুজের অভ্যন্তরে থাকবে?
- একটি ত্রিভুজ আঁক, যার উচ্চতা ও মধ্যমা একই রেখাংশ।

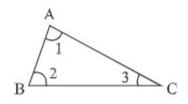

৯-৪ ত্রিভুজের তিন কোণের যোগফল

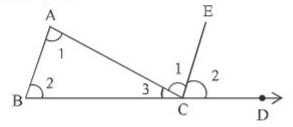
কোণগুলোকে নিয়ে ত্রিভূজের একটি অসাধারণ ধর্ম রয়েছে। নিচের তিনটি কাজ করি এবং ফলাফল পর্যবেক্ষণ করি।


কাজ :

১। একটি ব্রিভুজ আঁক। এর কোণ তিনটি কেটে চিত্র (ii) এর ন্যায় সাজাও। তিনটি কোণ মিলে এখন একটি কোণ হলো। কোণটি সরল কোণ এবং এর পরিমাপ ১৮০°। ব্রিভুজের তিনটি কোণের সমষ্টি ১৮০°।

২। একটি ত্রিভুজ আঁক এবং এর অনুরূপ আরও দুটি ত্রিভূজ আঁক। ত্রিভূজ তিনটি চিত্রের মত করে সাজাও। কোণ তিনটি একত্রে সরল কোণ তৈরি করে কি?




৩। খাতায় তোমার পছন্দ মতো তিনটি ত্রিভুজ অঙ্কন কর। চাঁদার সাহায্যে প্রতিটি ত্রিভুজের কোণগুলো পরিমাপ কর এবং নিচের সারণিটি পূরণ কর। (একটি করে দেখানো হলো)

<u> বিভূজ</u>	কোণের পরিমাপ		কোণগুলোর যোগফল
ΔABC 4 B	$\angle A = 60^{\circ},$ $\angle C = 55^{\circ},$	∠B = 65°,	$\angle A + \angle B + \angle C = 180^\circ$
A			

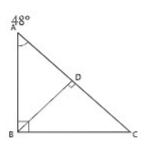
প্রতিটি ক্ষেত্রে কোণ তিনটির যোগফল মোটামুটি 180° হয়েছে কি?

উপপাদ্য ১। ত্রিভুজের তিন কোণের সমষ্টি দুই সমকোণের সমান।

বিশেষ নির্বচন : মনে করি, ABC একটি ত্রিভূজ।

প্রমাণ করতে হবে যে, $\angle BAC + \angle ABC + \angle ACB =$ দুই সমকোণ।

অঙ্কন : BC বাহুকে D পর্যন্ত বর্ধিত করি এবং BA রেখার সমান্তরাল করে CE রেখা আঁকি । কর্মা নং-১৭, গণিত-৭ম শ্রেণি

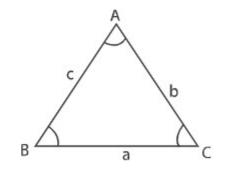

প্রমাণ :

ধাপ	যথাৰ্থতা
$(3) \ \angle BAC = \angle ACE$	[BA । CE এবং AC রেখা তাদের ছেদক।] [∵ একান্তর কোণ দুটি সমান।]
$(\aleph) \ \angle ABC = \angle ECD$	[BA । CE এবং BD রেখা তাদের ছেদক।] [∵ অনুরূপ কোণ দুটি সমান।]
(a) $\angle BAC + \angle ABC = \angle ACE + \angle ECD = \angle ACD$ (8) $\angle BAC + \angle ABC + \angle ACB = \angle ACD + \angle ACB$	[উভয়পক্ষে ∠ACB যোগ করে]
(৫) $\angle ACD + \angle ACB =$ দুই সমকোণ	[সরল কোণ উপপাদ্য]
∴ $∠BAC + ∠ABC + ∠ACB = দুই সমকোণ।$	[প্রমাণিত]
অনুসিদ্ধান্ত ১। ত্রিভুজের একটি বাহুকে বর্ধিত করলে	যে বহিঃস্থ কোণ উৎপন্ন হয়, তা এর বিপরীত

- অন্তঃস্থ কোণদ্বয়ের সমষ্টির সমান।
- ত্রিভুজের একটি বাহুকে বর্ধিত করলে যে বহিঃস্থ কোণ উৎপন্ন হয়, তা এর অন্তঃস্থ বিপরীত অনুসিদ্ধান্ত ২। কোণ দুটির প্রত্যেকটি অপেক্ষা বৃহত্তর।
- সমকোণী ত্রিভুজের সৃক্ষকোণদ্বয় পরস্পর পূরক। অনুসিদ্ধান্ত ৩।
- সমবাহু ত্রিভুজের প্রত্যেকটি কোণের পরিমাপ 60°. অনুসিদ্ধান্ত ৪।

অনুশীলনী ৯-১

১। ∠ABD, ∠CBD এবং ∠BCD এর মান নির্ণয় কর।

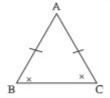

- একটি সমদ্বিবাহু ত্রিভুজের শীর্ষবিন্দুতে অবস্থিত কোণটির মান 50°। অবশিষ্ট কোণ দুটির মান নির্ণয় কর। 21
- প্রমাণ কর যে, চতুর্ভুজের চারটি কোণের সমষ্টি চার সমকোণের সমান। 01
- ΔABC -এর $AC\perp BC$; E,AC এর বর্ধিতাংশের উপর যেকোনো বিন্দু এবং $ED\perp AB$ 8 | ED এবং BC পরস্পরকে O বিন্দুতে ছেদ করে। প্রমাণ কর যে, $\angle CEO = \angle DBO$

ত্রিভুজ

৯-৫ ত্রিভুজের বাহু ও কোণের সম্পর্ক

পাশের চিত্রে ABC একটি গ্রিভুজ। গ্রিভুজটির তিনটি বাহু AB, BC, CA এবং তিনটি কোণ হলো $\angle ABC$ (সংক্ষেপে $\angle B$), $\angle BCA$ (সংক্ষেপে $\angle C$) এবং $\angle BAC$ (সংক্ষেপে $\angle A$)। সাধারণত $\angle A$, $\angle B$ ও $\angle C$ এর বিপরীত বাহুগুলোকে যথাক্রমে a, b ও c প্রকাশ করা হয়।

∴BC= a, CA=b এবং AB=c



ত্রিভুজের বাহু ও কোণের মধ্যে সম্পর্ক রয়েছে। বিষয়টি বোঝার জন্য নিচের কাজটি কর।

কাজ

১। যেকোনো একটি কোণ আঁক। কোণটির শীর্ষবিন্দু থেকে উভয় বাহুতে সমান দ্রত্বে দুটি বিন্দু চিহ্নিত কর। বিন্দু দুটি যুক্ত কর। একটি সমদ্বিবাহু ত্রিভুজ অঙ্কিত হলো। চাঁদার সাহায্যে ভূমি সংলগ্ন কোণ দুটি পরিমাপ কর। কোণ দুটি কি সমান?

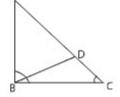
যদি কোনো ত্রিভুজের দুটি বাহু পরস্পর সমান হয়, তবে এদের বিপরীত কোণ দুটিও পরস্পর সমান। পরবর্তী অধ্যায়ে এই প্রতিজ্ঞাটির যুক্তিমূলক প্রমাণ করা হবে। অর্থাৎ, ABC ত্রিভুজে AB=AC হলে, $\angle ABC=\angle ACB$ হবে। সমদ্বিবাহু ত্রিভুজের এ বৈশিষ্ট্য বিভিন্ন যুক্তিমূলক প্রমাণে প্রয়োগ করা হয়।

কাজ

১। যেকোনো তিনটি ত্রিভূজ আঁক। রুলারের সাহায্যে প্রতিটি ত্রিভূজের তিনটি বাহুর দৈর্ঘ্য ও চাঁদার সাহায্যে তিনটি কোণ পরিমাপ কর এবং নিচের সারণিটি পরণ কর।

ত্রিভূজ	বাহুর পরিমাপ	কোণের পরিমাপ	বাহুর তুলনা	কোণের তুলনা
A ABC 4	AB = 3cm BC = 4cm CA = 6cm	A = 60° B = 75° C = 45°	AC>BC>AB বা AB <bc<ac< td=""><td>∠B>∠A>∠C ∠C<∠A<∠B</td></bc<ac<>	∠B>∠A>∠C ∠C<∠A<∠B

প্রতিটি ক্ষেত্রে কোনো দুটি বাহু ও এদের বিপরীত কোণগুলো তুলনা কর। এ থেকে কী সিদ্ধান্তে উপনীত হওয়া যায়?


উপপাদ্য ২

কোনো ত্রিভূজের একটি বাহু অপর একটি বাহু অপেক্ষা বৃহত্তর হলে, বৃহত্তর বাহুর বিপরীত কোণ ক্ষুদ্রতর বাহুর বিপরীত কোণ অপেক্ষা বৃহত্তর হবে।

বিশেষ নির্বচনঃ মনে করি, ΔABC - এ AC>AB

প্রমাণ করতে হবে যে, ∠ABC > ∠ACB

আন্ধন : AC থেকে AB এর সমান করে AD অংশ কাটি এবং B,D যোগ করি।

প্রমাণঃ

ধাপ	যথাৰ্থতা
(১) $\triangle ABD$ - $\triangleleft AB = AD$	
$\therefore \angle ADB = \angle ABD$	[সমদ্বিবাহু ত্রিভুজের ভূমি সংলগ্ন কোণদ্বয় সমান।]
(২) △BDC - এ বহিঃস্থ ∠ADB > ∠BCD	বিহিঃস্থ কোণ বিপরীত অন্তঃস্থ কোণ
∴∠ABD >∠BCD वा ∠ABD >∠ACB	দুটির প্রত্যেকটি অপেক্ষা বৃহত্তর]
(o) ∠ABC > ∠ABD	[$\angle ABD$ কোণটি $\angle ABC$ এর একটি
সুতরাং, $\angle ABC > \angle ACB$ (প্রমাণিত)।	অংশ]

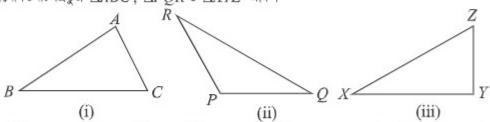
উপপাদ্য ৩

কোনো ত্রিভুজের একটি কোণ অপর একটি কোণ অপেক্ষা বৃহত্তর হলে, বৃহত্তর কোণের বিপরীত বাহু ক্ষুদ্রতর কোণের বিপরীত বাহু অপেক্ষা বৃহত্তর।

বিশেষ নির্বচন: মনে করি, $\triangle ABC$ এর $\angle ABC > \angle ACB$ প্রমাণ করতে হবে যে, $AC > AB$ প্রমাণ:	A B C
ধাপ	যথাৰ্থতা
(১) যদি AC বাহু AB বাহু অপেক্ষা	
বৃহত্তর না হয়,	
তবে (i) $AC = AB$ অথবা (ii) $AC < AB$ হবে।	
(i) যদি $AC = AB$ হয়, তবে $\angle ABC = \angle ACB$	সিমদ্বিবাহু ত্রিভুজের ভূমি সংলগ্ন কোণদ্বয়
কিন্তু শর্তানুযায়ী $\angle ABC > \angle ACB$	সমান]
তা প্রদত্ত শর্তবিরোধী।	
(ii) আবার, যদি $AC < AB$ হয়, তবে	[ক্ষুদ্রতর বাহুর বিপরীত কোণ ক্ষুদ্রতর]
∠ABC < ∠ACB হবে।	
কিন্তু তা-ও প্রদত্ত শর্তবিরোধী।	উপপাদ্য-২
∴AB≠AC এবং AC≮AB	
∴ AC > AB (প্রমাণিত) ৷	

3030

ত্রিভুজ


৯.৬ ত্রিভুজের দুই বাহুর দৈর্ঘ্যের যোগফল

ত্রিভুজের যেকোনো দুই বাহুর দৈর্ঘ্যের সমষ্টির সাথে তৃতীয় বাহুর দৈর্ঘ্যের সম্পর্ক রয়েছে। সম্পর্কটি অনুধাবনের জন্য দলগতভাবে নিচের কাজটি কর।

কাজ

১। ১৫টি বিভিন্ন মাপের কাঠি জোগাড় কর। এদের যেকোনো তিনটি দিয়ে একটি ত্রিভুজ তৈরি করার চেষ্টা কর। তোমরা কি প্রতিবারই ত্রিভুজ তৈরি করতে পারছো? কখন পারছো না তার ব্যাখ্যা দাও।

1 /		()	\ /
ত্রিভুজ	তিন বাহুর দৈর্ঘ্য	সত্য কিনা	সত্য/মিখ্যা
$\triangle ABC$	AB =	AB-BC <ca< td=""><td></td></ca<>	
	BC=	BC-CA< AB	
	CA =	+>_ CA-AB< BC +>_	
$\triangle PQR$	PQ =	PQ-QR <rp< td=""><td></td></rp<>	
	QR =	+> QR-RP <pq< td=""><td></td></pq<>	
	RP =	+> RP-PQ <qr< td=""><td></td></qr<>	
		+>_	
$\triangle XYZ$	XY =	XY-YZ <zx< td=""><td></td></zx<>	
	YZ=	+> YZ-ZX < XY	
	ZX=	+> ZX-XY < YZ	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_+_>_	

রুলারের সাহায্যে ত্রিভুজের বাহুগুলোর দৈর্ঘ্য মাপ এবং নিচের সারণিটি পুরণ কর।

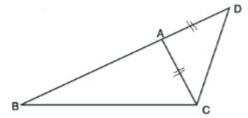
লক্ষ করি, যেকোনো ত্রিভুজের যেকোনো দুই বাহুর দৈর্ঘ্যের যোগফল এর তৃতীয় বাহুর দৈর্ঘ্য অপেক্ষা বেশি। আমরা আরও লক্ষ করি, যেকোনো ত্রিভুজের যেকোনো দুই বাহুর দৈর্ঘ্যের বিয়োগফল এর তৃতীয় বাহুর দৈর্ঘ্য অপেক্ষা কম।

কাজ: নিচের কোন ক্ষেত্রে ত্রিভুজ আঁকা সম্ভব- ব্যাখ্যা দাও।

- ১। 1 সেমি, 2 সেমি ও 3 সেমি
- ২। 1 সেমি, 2 সেমি ও 4 সেমি
- ৩। 4 সেমে, 3 সেমে ও 5 সেমে

উপপাদ্য ৪

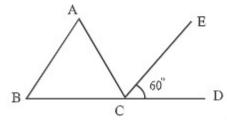
ত্রিভুজের যেকোনো দুই বাহুর দৈর্ঘ্যের সমষ্টি এর তৃতীয় বাহুর দৈর্ঘ্য অপেক্ষা বৃহত্তর।


বিশেষ নির্বচনঃ ধরি Δ ABC-এ BC বৃহত্তম বাহু। প্রমাণ

করতে হবে যে (AB+AC) > BC

অঙ্কন: BA কে D পর্যন্ত বর্ধিত করি, যেন

AD = AC হয়। C, D যোগ করি।


প্রমাণ :

ধাপ	যথার্থতা
(3) $\triangle ADC - \triangleleft AD = AC$	[সমদ্বিবাহু ত্রিভুজের ভূমি সংলগ্ন কোণদ্বয় সমান]
$\therefore \angle ACD = \angle ADC \ \therefore \angle ACD = \angle BDC$	
$(2) \angle BCD > \angle ACD$	[কারণ $\angle ACD, \angle BCD$ এর একটি অংশ
∴ ∠BCD > ∠BDC	
(\circ) $\triangle BCD \triangleleft \angle BCD > \angle BDC$	
$\therefore BD > BC$	[বৃহত্তর কোণের বিপরীত বাহু বৃহত্তর]
(৪) কিন্তু $BD = AB + AD = AB + AC$	[যেহেভূ $AC = AD$]
$\therefore (AB + AC) > BC$ (প্রমাণিত)	

অনুশীলনী ৯.২

নিচের তথ্যের ভিত্তিতে ১-৩ নম্বর প্রশ্নের উত্তর দাও :

চিত্রে, CE, $\angle ACD$ এর সমদ্বিখণ্ডক। $AB \parallel CE$ এবং $\angle ECD = 60^\circ$

ত্রিভূজ

১। $\angle BAC$ এর মান নিচের কোনটি?

o. 30°

খ. 45°

গ. 60°

ঘ. 120°

২। $\angle ACD$ এর মান নিচের কোনটি?

o. 60°

খ. 90°

গ. 120°

ঘ. 180°

ত। $\triangle ABC$ কোন ধরনের ত্রিভুজ?

ক. স্থূলকোণী

খ. সমদ্বিবাহু

গ. সমবাহু

ঘ. সমকোণী

৪। একটি ত্রিভুজের দুটি বাহু যথাক্রমে 5 সে.মি. এবং 4 সে.মি. ত্রিভুজটির অপর বাহুটি নিচের কোনটি হতে পারে?

ক. 1 সে.মি.

খ, 4 সে,মি,

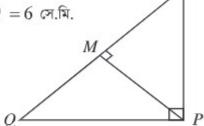
গ. 9 সে.মি.

ঘ. 10 সে.মি.

প্রমকোণী ত্রিভুজের সৃক্ষকোণদ্বয়ের একটি 40° হলে, অপর সৃক্ষকোণের মান নিচের কোনটি?

す. 40°

খ. 50°


91. 60°

ঘ. 140

৬। কোনো ত্রিভুজের একটি কোণ অপর দুটি কোণের সমষ্টির সমান হলে, ত্রিভুজটি কী ধরনের হবে?
 ক. সমবাহ খ. সুক্ষকোণী গ. সমকোণী ঘ. স্থুলকোণী

- ৭। $\triangle ABC$ -এ AB>AC এবং $\angle B$ ও $\angle C$ এর সমদ্বিখণ্ডকদ্বয় পরস্পর P বিন্দুতে ছেদ করেছে। প্রমাণ কর যে, PB>PC
- ৮। ABC একটি সমদ্বিবাহু ত্রিভুজ এবং এর AB=AC;BC কে যেকোনো দূরত্বে D পর্যন্ত বাড়ানো হলো। প্রমাণ কর যে, AD>AB
- ৯। ABCD চতুর্ভুজে AB=AD, BC=CD এবং CD>AD প্রমাণ কর যে, $\angle DAB> \angle BCD$
- ১০। $\triangle ABC$ এ $\angle ABC > \angle ACB$. D, BC বাছর মধ্যবিন্দু।
 - ক) তথ্যের আলোকে চিত্রটি অঙ্কন কর।
 - (খ) দেখাও যে, AC > AB
 - (গ) প্রমাণ কর যে, AB + AC>2AD
- ১১। $\triangle ABC$ এ AB=AC এবং D,BC -এর উপর একটি বিন্দু। প্রমাণ কর যে, AB>AD
- ১২। $\triangle ABC$ এ $AB \perp AC$ এবং D,AC -এর উপর একটি বিন্দু। প্রমাণ কর যে, BC > BD

- ১৩। প্রমাণ কর যে, সমকোণী ত্রিভুজের অতিভুজই বৃহত্তম বাহু।
- ১৪। প্রমাণ কর যে, ত্রিভূজের বৃহত্তম বাহুর বিপরীত কোণ বৃহত্তম।
- ১৫। চিত্রে, $\angle QPM = \angle RPM$ এবং $\angle QPR = 90^{\circ}$ । PQ = 6 সে.মি.
 - ক. $\angle QPM$ এর মান নির্ণয় কর।
 - খ. ∠PQM ও ∠PRM এর মান কত?
 - গ. PR এর মান নির্ণয় কর।

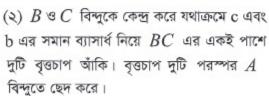
R

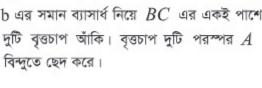
৯-৭ ত্রিভুজ অঙ্কন

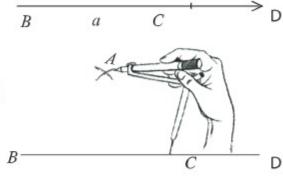
প্রত্যেক ত্রিভুজের ছয়টি অংশ আছে; তিনটি বাহু এবং তিনটি কোণ। ত্রিভুজের এই ছয়টি অংশের কয়েকটি অপর একটি ত্রিভুজের অনুরূপ অংশের সমান হলে দুটি ত্রিভুজ সর্বসম হতে পারে। সুতরাং কেবল ঐ অংশগুলো দেওয়া থাকলে ত্রিভুজটির আকার নির্দিষ্ট হয় এবং ত্রিভুজটি আঁকা যায়। নিচের উপাত্তগুলো জানা থাকলে একটি নির্দিষ্ট ত্রিভুজ সহজেই আঁকা যায়:

- (১) তিনটি বাহু
- (২) দুটি বাহু ও এদের অন্তর্ভুক্ত কোণ
- (৩) একটি বাহু ও এর সংলগ্ন দুটি কোণ
- (৪) দুটি কোণ ও এর একটির বিপরীত বাহু
- (৫) দুটি বাহু ও এর একটির বিপরীত কোণ
- (৬) সমকোণী ত্রিভুজের অতিভুজ ও অপর একটি বাহু অথবা কোণ।

সম্পাদ্য ১

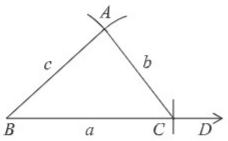

কোনো ত্রিভুজের তিনটি	বাহু দেওয়া আছে,	ত্রিভূজটি	আঁকতে	হবে
----------------------	------------------	-----------	-------	-----


মনে করি, একটি ত্রিভুজের তিনটি বাহু a,b,c দেওয়া	a ————
আছে। ত্রিভুজটি আঁকতে হবে।	c —

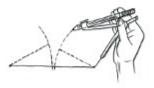

ত্রিভুঞ 9006

অঙ্কন :

(১) যেকোনো রশ্মি BD থেকে a এর সমান করে BC কেটে নিই।



(৩) A, B এবং A, C যোগ করি। তাহলে $\triangle ABC$ -ই উদ্দিষ্ট ত্রিভুজ।



কাজ

১। ৪ সে.মি., 5 সে.মি. ও 6 সে.মি দৈর্ঘ্যের তিনটি বাহুবিশিষ্ট একটি ত্রিভুজ আঁক।

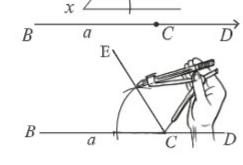
২। 12 সে.মি., 5 সে.মি. ও 6 সে.মি দৈর্ঘ্যের তিনটি বাহুবিশিষ্ট একটি ত্রিভুজ অঙ্কনের চেষ্টা কর।

তোমার চেষ্টা সফল হয়েছে কি?

মন্তব্য : ত্রিভুজের দুই বাহুর সমষ্টি এর তৃতীয় বাহু অপেক্ষা বৃহত্তর। তাই প্রদত্ত বাহুগুলো এমন হতে হবে যে, যেকোনো দুটির দৈর্ঘ্যের সমষ্টি তৃতীয়টির দৈর্ঘ্য অপেক্ষা বৃহত্তর হয়। তাহলেই ত্রিভুজটি আঁকা সম্ভব হবে।

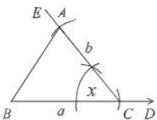
কর্মা নং-১৮, গণিত-৭ম শ্রেণি

সম্পাদ্য ২


কোনো ত্রিভুজের দুইটি বাহু ও এদের অন্তর্ভুক্ত কোণ দেওয়া আছে, ত্রিভুজটি আঁকতে হবে।

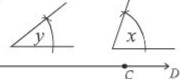
মনে করি, একটি ত্রিভুজের দুইটি বাহু $a \circ b$ এবং তাদের অন্তর্ভুক্ত কোণ $\angle x$ দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

a _____

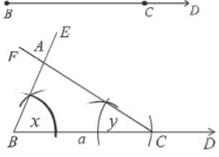

অঙ্কন :

- (১) যেকোনো রশ্মি BD থেকে a এর সমান করে BC
- (২) BC রেখাংশর C বিন্দুতে প্রদত্ত ∠ x এর সমান
 ∠BCE আঁকি।

(৩) CE রেখাংশ থেকে b এর সমান করে CA নিই। A,B যোগ করি। তাহলে $\triangle ABC$ -ই উদ্দিষ্ট ত্রিভুজ। প্রমাণ: অন্ধন অনুসারে, $\triangle ABC$ - এ BC=a,CA=b এবং ∠ACB=∠x.


ΔABC - আ BC = a, CA = b আবং ∠ACB = ∠
 ∴ ΔABC -ই নিৰ্দিষ্ট ত্ৰিভুজ।

সম্পাদ্য ৩


কোনো ত্রিভুজের একটি বাহু ও এর সংলগ্ন দুটি কোণ দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

মনে করি, একটি ত্রিভুজের একটি বাহু a এবং এর সংলগ্ন দুটি কোণ $\angle x$ ও $\angle y$ দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

অঙ্কন :

- (১) যেকোনো রশ্মি BD থেকে a এর সমান করে BC নিই।
- (২) BC রেখাংশের B ও C বিন্দুতে যথাক্রমে $\angle x$ এবং $\angle y$ এর সমান করে $\angle CBE$ এবং $\angle BCF$ আঁকি। BE ও CF পরস্পার A বিন্দুতে ছেদ করে। তাহলে $\triangle ABC$ -ই উদ্দিষ্ট ত্রিভুজ।

প্রমাণ: অঙ্কন অনুসারে,

$$\triangle ABC$$
 - এ $BC = a$, $\angle ABC = \angle x$ এবং $\angle ACB = \angle y$.

∴ △ABC -ই নির্দিষ্ট ত্রিভুজ।

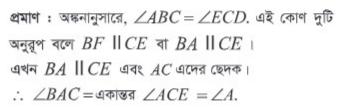
ত্রিভুজ

মন্তব্য : ত্রিভুজের তিন কোণের সমষ্টি দুই সমকোণের সমান, তাই প্রদত্ত কোণ দুটি এমন হতে হবে যেন এদের সমষ্টি দুই সমকোণ অপেক্ষা ছোটো হয়। এই শর্ত পালন করা না হলে কোনো ত্রিভুজ আঁকা সম্ভব হবে না।

কাজ

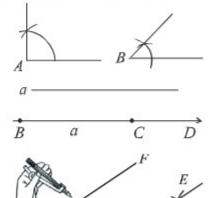
১। 7 সে.মি. দৈর্ঘ্যের বাহু ও 50° ও 60° কোণবিশিষ্ট একটি ত্রিভুজ আঁক।

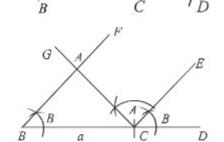
২। 6 সে.মি. দৈর্ঘ্যের বাহু ও 140° ও 70° কোণবিশিষ্ট একটি ত্রিভুজ অঙ্কনের চেষ্টা কর। তোমার চেষ্টা সফল হয়েছে কি? কেন ব্যাখ্যা কর।


সম্পাদ্য 8

কোনো ত্রিভুজের দুইটি কোণ এবং এদের একটির বিপরীত বাহু দেওয়া আছে, ত্রিভুজটি আঁকতে হবে।

মনে করি, একটি ত্রিভুজের দুটি কোণ $\angle A$ ও $\angle B$ এবং $\angle A$ এর বিপরীত বাহু a দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।


অঙ্কন :


- (১) যেকোনো রশাি BD থেকে a এর সমান করে BC নিই।
- (২) BC রেখাংশের $B \in C$ বিন্দুতে $\angle B$ এর সমান করে $\angle CBF \in \angle DCE$ আঁকি।
- (৩) এখন CE রেখার C বিন্দৃতে ∠A এর সমান করে
 ∠ECG আঁকি। CG ও BF রেখা A বিন্দৃতে ছেদ করে।
 ∴ ত্রিভুজ ABC ই উদ্দিষ্ট ত্রিভুজ।

এখন $\triangle ABC$ এ $\angle BAC = \angle A$, $\angle ABC = \angle B$ এবং

BC=a. সুতরাং, ABC ত্রিভুজটি শর্তমতে অঙ্কিত হলো।


সম্পাদ্য ৫

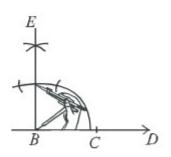
কোনো ত্রিভুজের দুটি বাহু এবং এদের একটির বিপরীত কোণ দেওয়া আছে, ত্রিভুজটি আঁকতে হবে।

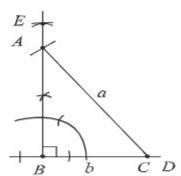
মনে করি, একটি ত্রিভুজের দুটি বাহু b ও c এবং b বাহুর বিপরীত কোণ $\angle B$ দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

অন্ধন:

- (১) যেকোনো রশ্মি BD আঁকি।
- (২) B বিন্দৃতে প্রদন্ত $\angle B$ এর সমান করে $\angle DBE$ আঁকি। BE রেখা থেকে c এর সমান করে BA নিই।

প্রমাণ : অন্ধনানুসারে, $\triangle ABC$ – এ BA=c, AC=b এবং $\angle ABC=\angle B$ আবার, $\triangle ABC'$ – এ BA=c, AC'=b এবং $\angle ABC'=\angle B$ দেখা যায়, $\triangle ABC$ এবং $\triangle ABC'$ উভয়ই প্রদত্ত শর্তসমূহ পূরণ করে। তাহলে $\triangle ABC$ বা $\triangle ABC'$ –ই উদ্দিষ্ট ত্রিভুজ।


সম্পাদ্য ৬


কোনো সমকোণী ত্রিভূজের অতিভূজ ও অপর একটি বাহু দেওয়া আছে, ত্রিভূজটি আঁকতে হবে।

মনে করি, একটি সমকোণী ত্রিভুজের অতিভুজ a ও অপর এক বাহু b দেওয়া আছে। ত্রিভুজটি আঁকতে হবে। **অন্ধন** :

- (১) যেকোনো রশ্মি BD থেকে b এর সমান করে BC নিই।
- $b \quad C \quad D$
- (২) BC রেখার B বিন্দুতে BE লম্ব আঁকি।
- (৩) C কে কেন্দ্র করে a এর সমান ব্যাসার্ধ নিয়ে BE রেখার উপর একটি বৃত্তচাপ আঁকি, যেন এটি BE -কে A বিন্দুতে ছেদ করে। A ও C যোগ করি। তাহলে ΔABC -ই উদ্দিষ্ট ত্রিভুজ।

প্রমাণ : অন্ধনানুসারে, AC=a, BC=b এবং $\angle ABC=$ এক সমকোণ।

∴ ∆ABC -ই নির্ণেয় ত্রিভুজ।

অনুশীলনী ৯.৩

১। কোনো ত্রিভুজের দুটি বাহু এবং এদের একটি বিপরীত কোণ দেওয়া থাকলে, সর্বাধিক কয়টি ত্রিভুজ আঁকা যাবে?

ক. 1

খ. 2

গ. 3

ঘ. 4

২। কোন ক্ষেত্রে ত্রিভুজ আঁকা সম্ভব যখন তিনটি বাহুর দৈর্ঘ্য -

ক. 1 সে.মি., 2 সে.মি. 3 সে.মি.

খ. 3 সে.মি., 4 সে.মি. 5 সে.মি.

গ. 2 সে.মি., 4 সে.মি. 6 সে.মি.

ঘ. 3 সে.মি., 4 সে.মি. 7 সে.মি.

- i. একটি ত্রিভূজের দুটি বাহু এবং তাদের অন্তর্ভুক্ত কোণ দেওয়া থাকলে, ত্রিভূজটি আঁকা যায়।
 - ii. দুটি বাহুর সমষ্টি তৃতীয় বাহু অপেক্ষা বৃহত্তর হলে, ত্রিভুজটি আঁকা যায়।
 - iii. কোনো ত্রিভুজের একাধিক স্থুলকোণ থাকতে পারে।

302€

আগের পৃষ্ঠার তথ্য অনুসারে নিচের কোনটি সঠিক?

ず. i ଓ ii

খ. ii ও iii

গ. i ও iii

घ. i, ii ও iii

- ৪। ত্রিভুজের বাহু তিনটির দৈর্ঘ্যের সমষ্টিকে কি বলে?
 - (ক) ক্ষেত্রফল

(খ) আয়তন

(গ) দৈর্ঘ্য

(ঘ) পরিসীমা

- ৫ ৷ ত্রিভুজের অন্তঃস্থ কোপ কয়টি?
 - (ক) 1টি

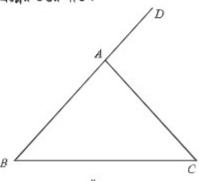
(খ) 2টি

(গ) 3টি

- (ঘ) 4টি
- ৬। সমবাহু ত্রিভুজের প্রত্যেকটি কোণ কত ডিগ্রি?
 - (季) 30°

(학) 45°

(গ) 60°


- (되) 90°
- ৭। একটি সমকোণী ত্রিভুজের একটি কোণ 60° হলে অপর কোনটি কত ডিগ্রি?
 - (季) 300

(খ) 60°

(1) 90°

(a) 180₀

নিচের চিত্র অনুসারে ৮-৯ নম্বর প্রশ্নের উত্তর দাও :

- ৮। C বিন্দুতে BA রেখার সমান্তরাল রেখা আঁকতে হলে, কোন কোণের সমান কোণ আঁকতে হবে?
 - (₱) ∠ABC
- (회) ZACB
- (গ) ∠BAC
- (च) ∠CAD

- ৯ । ∠CAD এর সমান নিচের কোনটি?
 - $(\overline{\Phi}) \angle BAC + \angle ACB$

- (₹) $\angle ABC + \angle ACB$
- (1) $\angle ABC + \angle ACB + \angle BAC$
- $(\triangledown) \angle ABC + \angle BAC$
- ১০। একটি ত্রিভুজের তিনটি বাহুর দৈর্ঘ্য দেওয়া আছে। ত্রিভুজটি আঁক।
 - (ক) 3 সে.মি., 4 সে.মি., 6 সে.মি
- (খ) 3.5 সে.মি., 4.7 সে.মি., 5.6 সে.মি
- ১১। একটি ত্রিভুজের দুটি বাহু ও এদের অন্তর্ভুক্ত কোণ দেওয়া আছে। ত্রিভুজটি আঁক।
 - (ক) 3 সে.মি., 4 সে.মি., 60°
- (খ) 3.8 সে.মি., 4.7 সে.মি., 45°
- ১২। একটি ত্রিভুজের একটি বাহু ও এর সংলগ্ন দুটি কোণ দেওয়া আছে। ত্রিভুজটি আঁক।
 - (ক) 5 সে.মি., 30°, 45°
- (খ) 4.5 সে.মি., 45°, 60°

ত্রিপুজ

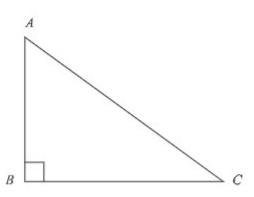
১৩। একটি ত্রিভুজের দুটি কোণ ও প্রথম কোণের বিপরীত বাহু দেওয়া আছে। ত্রিভুজটি আঁক।

- (ক) 120°, 30°, 5 সে.মি.
- (খ) 60°, 30°, 4 সে.মি.

১৪। একটি ত্রিভুজের দুটি বাহু ও প্রথম বাহুর বিপরীত কোণ দেওয়া আছে । ত্রিভুজটি আঁক।

- (ক) 5 সে.মি., 6 সে.মি., 60°
- (খ) 4 সে.মি., 5 সে.মি., 30°

১৫। একটি সমকোণী ত্রিভুজের অতিভুজ ও অপর একটি বাহুর দৈর্ঘ্য দেওয়া আছে। ত্রিভুজটি আঁক।


- (ক) 7 সে.মি., 4 সে.মি.
- (খ) 4 সে.মি., 3 সে.মি.

১৬। একটি সমকোণী ত্রিভুজের একটি বাহু 5 সে.মি. এবং একটি সৃক্ষকোণ 45° দেওয়া আছে। ত্রিভুজটি আঁক।

১৭। একই সরলরেখায় অবস্থিত নয় এমন তিনটি বিন্দু $A, B ext{ @ } C.$

- ক. বিন্দু তিনটি দিয়ে একটি ত্রিভুজ আঁক।
- খ. অঙ্কিত ত্রিভূজের শীর্ষবিন্দু থেকে ভূমির ওপর লম্ব আঁক।
- গ. অঙ্কিত ত্রিভূজের ভূমি যে সমকোণী সমদ্বিবাহু ত্রিভূজের অতিভূজ হয়, ঐ ত্রিভূজটি আঁক।

195

- ক. সঠিক পরিমাপে ABC ত্রিভুজটি আঁক।
- খ. অতিভূজের পরিমাণ সেন্টিমিটারে নির্ণয় কর এবং $\angle ACB$ এর সমান করে একটি কোণ আঁক।
- গ. একটি সমকোণী ত্রিভুজ আঁক, যার অতিভুজ চিত্রে অঙ্কিত ত্রিভুজের অতিভুজ অপেক্ষা 2 সে.মি. বড় এবং একটি কোণ, ∠ACB এর সমান হয়।

১৯। একটি ত্রিভুজের দুটি বাহু a=3 সে.মি., b=4 সে.মি. এবং একটি কোণ $\angle B=30^\circ$

- ক. ∠B এর সমান একটি কোণ আঁক।
- খ. একটি ত্রিভুজ আঁক, যার দুই বাহু a ও b এর সমান এবং অন্তর্ভুক্ত কোণ $\angle B$ এর সমান হয়।
- গ. এমন একটি ত্রিভুজ আঁক, যার একটি বাহু b এবং $\angle B$ এর বিপরীত বাহু 2a হয়।

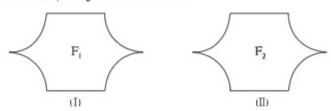
২০। একটি ত্রিভুজের তিনটি বাহুর দৈর্ঘ্য a=4 সে.মি., b=5 সে.মি., c=6 সে.মি.

- (ক) একটি সমবাহু ত্রিভুজ অঙ্কন কর।
- (খ) ত্রিভুজটি অঙ্কন কর। (অঙ্কনের চিহ্ন ও বিবরণ আবশ্যক)
- (গ) এমন একটি সমকোণী ত্রিভুজ অঙ্কন কর যেন সমকোণ সংলগ্ন বাহুদ্বয় a ও b এর সমান হয়। (অঙ্কনের চিহ্ন ও বিবরণ আবশ্যক)
- ২১। AB ও CD দুটি সমান্তরাল সরলরেখা PQ রেখাটি AB ও CD রেখাকে যথাক্রমে E ও F বিন্দুতে ছেদ করেছে।
 - ক) বর্ণনা অনুযায়ী চিত্র অঙ্কন কর।
 - (খ) দেখাও যে, ∠AEP = ∠CFE
 - (গ) দেখাও যে, $\angle AEF + \angle CFE = ২$ সমকোণ

দশম অধ্যায়

সর্বসমতা ও সদৃশতা

[এই অধ্যায়ের প্রয়োজনীয় পূর্বজ্ঞান বইয়ের শেষে পরিশিষ্ট অংশে সংযুক্ত আছে। প্রথমে পরিশিষ্ট অংশ পাঠ/আলোচনা করতে হবে।]

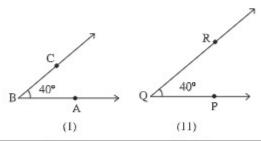

আমাদের চারদিকে বিভিন্ন আকৃতি ও আকারের বস্তু দেখতে পাই। এদের কিছু হুবহু সমান, আবার কিছু দেখতে একই রকম, কিন্তু সমান নয়। তোমাদের শ্রেণির শিক্ষার্থীদের প্রত্যেকের গণিত পাঠ্যপুস্তুকটি আকৃতি, আকার ও ওজনে একই, সেগুলো সবদিক দিয়ে সমান বা সর্বসম। আবার একটি গাছের পাতাগুলোর আকৃতি একই হলেও আকারে ভিন্ন, পাতাগুলো দেখতে এক রকম বা সদৃশ। ফটোগ্রাফির দোকানে যখন আমরা মূলকপির অতিরিক্ত কপি চাই তা মূলকপির হুবহু সমান, বড়ো বা হোটো করে চাইতে পারি। কপিটি যদি মূলকপির সমান হয় সেক্ষেত্রে কপি দুটি সর্বসম। কপিটি যদি মূলকপির চেয়ে বড়ো বা ছোটো হয় সেক্ষেত্রে কপি দুটি সর্বসম। অত্যন্ত গুরুত্বপূর্ণ এই দুই জ্যামিতিক ধারণা নিয়ে আলোচনা করব। আমরা আপাতত সমতলীয় ক্ষেত্রের সর্বসমতা ও সদৃশতা বিবেচনা করব।

অধ্যায় শেষে শিক্ষার্থীরা –

- বিভিন্ন জ্যামিতিক আকার ও আকৃতি হতে সর্বসম এবং সদৃশ আকার ও আকৃতি চিহ্নিত করতে পারবে।
- সর্বসমতা ও সদৃশতার মধ্যে পার্থক্য করতে পারবে ।
- 🕨 ত্রিভুজের সর্বসমতা প্রমাণ করতে পারবে।
- ত্রিভুজ ও চতুর্ভুজের সদৃশতা ব্যাখ্যা করতে পারবে।
- সর্বসমতা ও সদৃশতার বৈশিষ্ট্যের ভিত্তিতে সহজ সমস্যার সমাধান করতে পারবে।

১০-১ সর্বসমতা

নিচের সমতলীয় চিত্র দুটি দেখতে একই আকৃতি ও আকারের। চিত্র দুটি সর্বসম কিনা নিশ্চিত হওয়ার জন্য উপরিপাতন পদ্ধতি গ্রহণ করা যায়। এ পদ্ধতিতে প্রথম চিত্রের একটি অনুরূপ কপি করে দ্বিতীয়টির উপর রাখি। যদি চিত্রগুলো পরস্পরকে সম্পূর্ণরূপে আবৃত করে, তবে এরা সর্বসম। চিত্র F_1 , চিত্র F_2 এর সর্বসম হলে আমরা $F_1\cong F_2$ দ্বারা প্রকাশ করি।


দুটি রেখাংশ কখন সর্বসম হবে? চিত্রে দুই জোড়া রেখাংশ আঁকা হয়েছে। উপরিপাতন পদ্ধতিতে AB এর অনুরূপ কপি CD এর উপর রেখে দেখি যে, AB রেখাংশ CD রেখাংশকে ঢেকে দিয়েছে এবং A ও B বিন্দু যথাক্রমে C ও D বিন্দুর উপর পতিত হয়েছে। সুতরাং রেখাংশ দুটি সর্বসম। একই কাজ ফর্মা নং-১৯, গণিত-৭ম শ্রেণি

দিতীয় জোড়া সরলরেখার জন্য করে দেখি যে, রেখাংশ দুটি সর্বসম নয়। লক্ষ করি, কেবল প্রথম জোড়া রেখাংশের দৈর্ঘ্য সমান।

দুটি রেখাংশের দৈর্ঘ্য সমান হলে রেখাংশ দুটি সর্বসম। আবার বিপরীতভাবে, দুটি রেখাংশ সর্বসম হলে এদের দৈর্ঘ্য সমান।

দুইটি কোণ কখন সর্বসম হবে? চিত্রে 40° দুইটি কোণ আঁকা হয়েছে। উপরিপাতন পদ্ধতি গ্রহণ করে প্রথম চিত্রের একটি অনুরূপ কপি করে দ্বিতীয়টির উপর রাখি। B বিন্দু Q বিন্দুর উপর এবং BA রিশ্ম QP রিশ্মির ওপর পতিত হয়েছে। লক্ষ করি, কোণ দুটির পরিমাপ সমান বলে BC রিশ্মি QR রিশ্মির উপর পতিত হয়েছে। অর্থাৎ $\angle ABC \cong \angle PQR$

দুটি কোণের পরিমাপ সমান হলে কোণ দুটি সর্বসম। আবার বিপরীতভাবে, দুটি কোণ সর্বসম হলে এদের পরিমাপও সমান।

১০-২ ত্রিভুজের সর্বসমতা

একটি ত্রিভুজকে অপর একটি ত্রিভুজের উপর স্থাপন করলে যদি ত্রিভুজ দুটি সর্বতোভাবে মিলে যায়, তবে ত্রিভুজ দুটি সর্বসম হয়। সর্বসম ত্রিভুজের অনুরূপ বাহু ও অনুরূপ কোণগুলো সমান। নিচের $\triangle ABC$ ও $\triangle DEF$ সর্বসম।

 ΔABC ও ΔDEF সর্বসম হলে এবং A,B,C শীর্ষ যথাক্রমে D,E,F শীর্ষের উপর পতিত হলে AB=DE,AC=DF,BC=EF

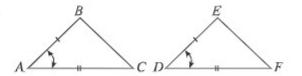
$$\angle A = \angle D, \angle B = \angle E, \angle C = \angle F$$
 হবে।

 ΔABC ও ΔDEF সর্বসম বোঝাতে $\Delta ABC \cong \Delta DEF$ লেখা হয়।

ত্রিভুজের সর্বসমতা প্রমাণের জন্য কী তথ্য প্রয়োজন? এ জন্য দলগতভাবে পরের পৃষ্ঠার কাজটি কর:

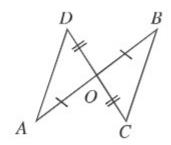
সর্বসমতা ও সদৃশতা

কাজ


- ১। $\triangle ABC$ একটি ত্রিভুজ আঁক যেন AB=5 সে.মি., BC=6 সে.মি.এবং $\angle B=60^\circ$ হয়।
- (ক) ত্রিভুজের তৃতীয় বাহুর দৈর্ঘ্য এবং অন্য কোণ দুটি পরিমাপ কর।
- (খ) তোমাদের পরিমাপগুলো তুলনা কর। কী দেখতে পাচ্ছ?

উপপাদ্য ১ (বাহু-কোণ-বাহু উপপাদ্য)

যদি দুটি ত্রিভুজের একটির দুই বাহু যথাক্রমে অপরটির দুই বাহুর সমান হয় এবং বাহু দুটির অন্তর্ভুক্ত কোণ দুটি পরস্পর সমান হয়, তবে ত্রিভুজ দুটি সর্বসম হয়।


বিশেষ নির্বচন: মনে করি.

 ΔABC ও ΔDEF এ AB=DE, AC=DF এবং অন্তর্ভুক্ত $\angle BAC=$ অন্তর্ভুক্ত $\angle EDF$ প্রমাণ করতে হবে যে, $\Delta ABC\cong \Delta DEF$

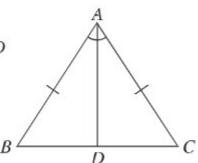
প্রমাণ

ধাপ	যথাৰ্থতা
(১) ΔABC কে ΔDEF এর উপর এমনভাবে স্থাপন করি যেন A বিন্দু D বিন্দুর উপর ও AB বাহু DE বাহু বরাবর এবং DE বাহুর যে পাশে F আছে C বিন্দু ঐপাশে পড়ে। এখন $AB=DE$ বলে B বিন্দু অবশ্যই E বিন্দুর উপর পড়বে।	[বাহুর সর্বসমতা]
(২) যেহেতু $\angle BAC = \angle EDF$ এবং AB বাহু DE বাহুর উপর পড়ে, সুতরাং AC বাহু DF বাহু বরাবর পড়বে।	[কোণের সর্বসমতা]
(৩) $AC=DF$ বলে C বিন্দু অবশ্যই F বিন্দুর উপর পড়বে।	[বাহুর সর্বসমতা]
(8) এখন B বিন্দু E বিন্দুর উপর এবং C বিন্দু F বিন্দুর উপর পড়ে বলে BC বাহু অবশ্যই EF বাহুর সাথে পুরোপুরি মিলে যাবে। অতএব, ΔABC , ΔDEF এর উপর সমাপতিত হবে। $\Delta ABC\cong \Delta DEF$ (প্রমাণিত)	[দুটি বিন্দুর মধ্য দিয়ে একটি মাত্র সরলরেখা অঙ্কন করা যায়]

 $\therefore \Delta AOD \cong \Delta BOC$ [বাহু-কোণ-বাহু উপপাদ্য] (প্রমাণিত)

উপপাদ্য ২

যদি কোনো ত্রিভুজের দুটি বাহু পরস্পর সমান হয়, তবে এদের বিপরীত কোণ দুটিও পরস্পর সমান হবে।

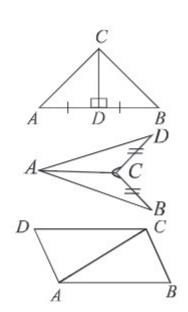

বিশেষ নির্বচন : মনে করি, ABC ত্রিভুজে AB = AC । প্রমাণ করতে হবে যে, $\angle ABC = \angle ACB$ ।

আঙ্কন : $\angle BAC$ এর সমদ্বিখণ্ডক AD আঁকি যেন তা BC কে D বিন্দুতে ছেদ করে।

প্রমাণ : $\triangle ABD$ এবং $\triangle ACD$ এ

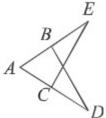
- (১) AB = AC (প্রদত্ত)
- (২) AD সাধারণ বাহু এবং
- (৩) অন্তর্ভুক্ত $\angle BAD =$ অন্তর্ভুক্ত $\angle CAD$ (অঙ্কনানুসারে) সূতরাং, $\triangle ABD \cong \triangle ACD$ [বাহু-কোণ-বাহু উপপাদ্য]

∴ ∠ABD = ∠ACD অর্থাৎ, ∠ABC = ∠ACB (প্রমাণিত)

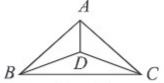


ञनूशीलनी ১०-১

১। চিত্রে, CD, AB এর লম্ব সমদ্বিখণ্ডক, প্রমাণ কর যে $\Delta ADC \cong \Delta BDC$


২। চিত্রে, CD = CB এবং $\angle DCA = \angle BCA$ প্রমাণ কর যে, AB = AD

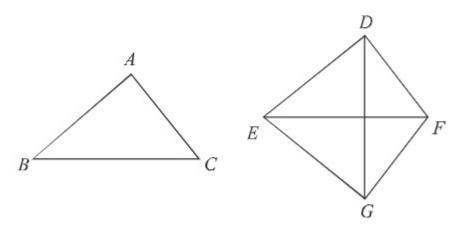
৩। চিত্রে, $\angle BAC = \angle ACD$ এবং AB = DC প্রমাণ কর যে, AD = BC, $\angle CAD = \angle ACB$ এবং $\angle ADC = \angle ABC$



৪। প্রমাণ কর যে, সমদ্বিবাহু ত্রিভুজের সমান বাহু বাদে অপর বাহু উভয়দিকে বর্ধিত করলে উৎপন্ন বহিঃস্থ কোণ দুটি পরস্পর সমান। সর্বসমতা ও সদৃশতা ১৪৯

৫। চিত্রে, AD = AE, BD = CEএবং $\angle AEC = \angle ADB$ প্রমাণ কর যে, AB = AC

৬। চিত্রে, ΔABC এবং ΔDBC দুটি সমদ্বিবাহু ত্রিভুজ। প্রমাণ কর যে, $\Delta ABD = \Delta ACD$


- প্রমাণ কর যে, সমদিবাহু ত্রিভুজের ভূমির প্রান্তবিন্দু থেকে বিপরীত বাহুদ্য়ের উপর অঙ্কিত মধ্যমাদয়
 সমান।
- ৮। প্রমাণ কর যে, সমবাহু ত্রিভুজের কোণগুলো পরস্পর সমান।

উপপাদ্য ৩ (বাহু-বাহু-বাহু উপপাদ্য)

যদি একটি ত্রিভুজের তিন বাহু যথাক্রমে অপর একটি ত্রিভুজের তিন বাহুর সমান হয়, তবে ত্রিভুজ দুটি সর্বসম হবে।

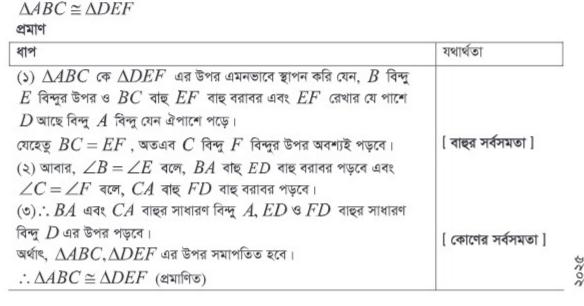
বিশেষ নির্বচন : মনে করি, $\triangle ABC$ এবং $\triangle DEF$ এ

AB=DE, AC=DF এবং BC=EF, প্রমাণ করতে হবে যে, $\triangle ABC\cong \triangle DEF$

প্রমাণ : মনে করি, BC এবং EF বাহু যথাক্রমে ΔABC এবং ΔDEF এর বৃহত্তম বাহুদ্বয় । এখন ΔABC কে ΔDEF এর উপর এমনভাবে স্থাপন করি, যেন B বিন্দু E বিন্দুর উপর ও BC বাহু EF বাহু বরাবর এবং EF রেখার যে পাশে D বিন্দু আছে, A বিন্দু এর বিপরীত পাশে পড়ে। মনে করি, G বিন্দু A বিন্দুর নতুন অবস্থান।

যেহেতু BC=EF, C বিন্দু F বিন্দুর উপর পড়বে। সুতরাং ΔGEF হবে ΔABC এর নতুন অবস্থান। অর্থাৎ, EG=BA, FG=CA ও $\angle EGF=\angle BAC$

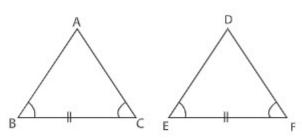
D, G যোগ করি।


ধাপ	যথাৰ্থতা			
(১) ΔEGD এ $EG=ED$ [কারণ $EG=BA=ED$] অতএব, $\angle EDG=\angle EGD$	[ত্রিভুজের সমান বাহুদ্বয়ের বিপরীত কোণ পরস্পর সমান]			
(2) ΔFGD a $FG = FD$				
অতএব, $\angle FDG = \angle FGD$	[ত্রিভুজের সমান বাহুদ্বয়ের			
(৩) সুতরাং, $\angle EDG + \angle FDG = \angle EGD + \angle FGD$	বিপরীত কোণদ্বয় পরস্পর সমা			
ৰা, $\angle EDF = \angle EGF$				
অর্থাৎ, $\angle BAC = \angle EDF$				
অতএব, $\triangle ABC$ ও $\triangle DEF$ - এ $AB=DE$, $AC=DF$	[বাহু-কোণ-বাহু উপপাদ্য]			
এবং অন্তর্ভুক্ত $\angle BAC=$ অন্তর্ভুক্ত $\angle EDF$				
$∴$ $\triangle ABC \cong \triangle DEF$ (প্রমাণিত)।				

উপপাদ্য 8 (কোণ-বাহু-কোণ উপপাদ্য)

যদি একটি ত্রিভুজের দুটি কোণ ও কোণ সংলগ্ন বাহু যথাক্রমে অপর একটি ত্রিভুজের দুটি কোণ ও কোণ সংলগ্ন বাহুর সমান হয়, তবে ত্রিভুজ দুটি সর্বসম হবে।

বিশেষ নির্বচনঃ মনে করি, $\triangle ABC$ ও $\triangle DEF$ -এ $\angle B=\angle E$, $\angle C=\angle F$ এবং কোণ সংলগ্ন BC বাহু = অনুরূপ EF বাহু =


প্রমাণ করতে হবে যে,

সর্বসমতা ও সদৃশতা

অনুসিদ্ধান্ত: একটি ত্রিভুজের একটি বাহু ও দুটি কোণ যথাক্রমে অপর একটি ত্রিভুজের একটি বাহু ও দুটি কোণের সমান হলে ত্রিভুজ দুটি সর্বসম।

কাজ

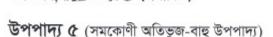
 Δ ABC ও Δ DEF এ BC=EF এবং \angle B= \angle E ও \angle C= \angle F হলে দেখাও যে, Δ ABC \cong Δ DEF

ইঙ্গিত : $\angle A+\angle B+\angle C=\angle D+\angle E+\angle F=$ ২ সমকোণ হবে।

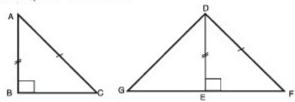
∴ ∠B= ∠E, ∠C= ∠F, হলে ∠A= ∠D হবে। অতঃপর উপপাদ্য ৪ প্রয়োগ কর।

উদাহরণ ১। প্রমাণ কর যে, কোনো ত্রিভুজের শিরঃকোণের সমদ্বিখণ্ডক যদি ভূমির উপর লম্ব হয়, তবে ত্রিভুজটি সমদ্বিবাহ।

বিশেষ নির্বচন : চিত্রে, ΔABC এর শিরঃকোণ A -এর সমদ্বিখণ্ডক AD যা ভূমি BC এর D বিন্দুতে লম । প্রমাণ করতে হবে যে, AB=AC


প্রমাণ : $\triangle ABD$ এবং $\triangle ACD$ এ

 $\angle BAD = \angle CAD$ [$\because AD$, $\angle BAC$ এর সমদ্বিখণ্ডক]


 $\angle ADB = \angle ADC \ [\because AD \ , \ BC \ এর উপর লম]$

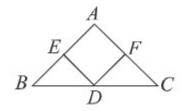
এবং AD সাধারণ বাহু।

সুতরাং $\triangle ABD \cong \triangle ACD$ [কোণ বাহু কোণ উপপাদ্য] এতএব, AB = AC [প্রমাণিত]

দুটি সমকোণী ত্রিভুজের অতিভুজদ্বয় সমান হলে এবং একটির এক বাহু অপরটির অপর এক বাহুর সমান হলে, ত্রিভুজদ্বয় সর্বসম হবে।

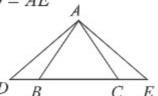
বিশেষ নির্বচন : মনে করি, ABCও DEF সমকোণী ত্রিভুজদ্বয়ে

অতিভুজ AC =অতিভুজ DF এবং AB = DE

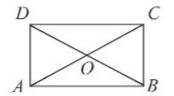

প্রমাণ করতে হবে যে, $\triangle ABC \cong \triangle DEF$

প্রমাণ

ধাপ	যথাৰ্থতা
(১) ΔABC কে ΔDEF এর উপর এমনভাবে স্থাপন করি যেন, B বিন্দু E	
বিন্দুর উপর, BA বাহু ED বাহু বরাবর এবং C বিন্দু DE এর যে পাশে	
F বিন্দু আছে এর বিপরীত পাশে পড়ে। ধরি, C বিন্দুর নতুন অবস্থান G ।	
(২) যেহেতু AB=DE, A বিন্দু D বিন্দুর উপর পড়বে। ফলে Δ DEG হবে Δ ABC এর নতুন অবস্থান অর্থাৎ $DG=AC$, $\angle G=\angle C$ $\angle DEG=\angle B=1$ সমকোণ। (৩) যেহেতু $\angle DEF+\angle DEG=1$ সমকোণ $+1$ সমকোণ $=2$ সমকোণ $=1$ সরলকোণ, GEF একটি সরলরেখা। সুতরাং Δ DGF একটি সমদ্বিবাহু ত্রিভুজ। যার $DG=DF$ $\therefore \angle F=\angle G=\angle C$ (৪) এখন Δ ABC ও Δ DEF এর	[ত্রিভুজের দুই বাহু সমান হলে তাদের বিপরীত কোণ দুটি পরস্পর সমান]
$\angle \mathbf{B} = \angle \mathbf{E}$ [প্রত্যেকে ১ সমকোণ]	[কোণ-বাহু-কোণ
\angle C = \angle F এবং AB = অনুরূপ DE	উপপাদ্য]
সুতরাং \triangle ABC \cong \triangle DEF (প্রমাণিত)	


অনুশীলনী ১০-২

- ১। $\triangle ABC$ এ AB=AC এবং O,ABC এর অভ্যন্তরে এমন একটি বিন্দু যেন OB=OC হয় প্রমাণ কর যে, $\angle AOB=\angle AOC$
- ২। $\triangle ABC$ এর AB ও AC বাহুতে যথাক্রমে D ও E এমন দুটি বিন্দু যেন BD=CE এবং BE=CD প্রমাণ কর যে, $\angle ABC=\angle ACB$
- ৩। চিত্রে, AB=AC,BD=DC এবং BE=CF | প্রমাণ কর যে, $\angle EDB=\angle FDC$


সর্বসমতা ও সদৃশতা

8। চিত্রে, AB=AC এবং $\angle BAD=\angle CAE$ । প্রমাণ কর যে, AD=AE

৫। ABCD চতুর্ভুজে $AC, \angle BAD$ এবং $\angle BCD$ এর সমদ্বিখণ্ডক। প্রমাণ কর যে, $\angle B = \angle D$

৬। চিত্রে, AB এবং CD পরস্পর সমান ও সমান্তরাল এবং AC ও BD কর্ণ দুটি O বিন্দুতে ছেদ করেছে। প্রমাণ কর যে, AD=BC

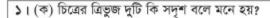
 ৭। প্রমাণ কর যে, সমদ্বিবাহু ত্রিভুজের ভূমির প্রান্তবিন্দুদয় থেকে বিপরীত বাহুর উপর অঙ্কিত লম্বয়য় পরস্পার সমান।

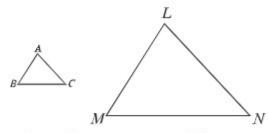
৮। প্রমাণ কর যে, কোনো ত্রিভ্জের ভূমির প্রান্ত বিন্দুদ্বয় থেকে বিপরীত বাহুর উপর অঙ্কিত লম্বদ্বয় যদি সমান হয়, তবে ত্রিভুজটি সমদ্বিবাহ।

৯। ABCD চতুর্ভুজের AB=AD এবং $\angle B=\angle D=$ এক সমকোণ। প্রমাণ কর যে, $\triangle ABC\cong \triangle ADC$

১০-৩ সদৃশতা

নিচের চিত্রগুলো একই চিত্রের ছোটো-বড়ো আকার। এদের বিভিন্ন অংশের আকৃতি একই, কিন্তু অনুরূপ দুই বিন্দুর দূরত্ব সমান নয়। চিত্রগুলোকে সদৃশ চিত্র বলা হয়।





ফর্মা নং-২০, গণিত-৭ম শ্রেণি

কাজ

	কোণ		বাহু
A =	L=	AB =	LM =
B=	M =	BC =	MN =
C =	N=	CA =	NL =

- (খ) ত্রিভুজ দুটির কোণগুলো মেপে সারণিটি পূরণ কর। কোণগুলোর মধ্যে কোনো সম্পর্ক আছে কি?
- (গ) ত্রিভুজ দুটির বাহুগুলো মেপে সারণিটি পূরণ কর। বাহুগুলোর মধ্যে কোনো সম্পর্ক আছে কি?

পূরণকৃত ছকটি হতে দেখা যায়,

$$\angle A = \angle L$$

$$\angle B = \angle M$$

$$\angle C = \angle N$$

 \angle L, \angle M ও \angle N যথাক্রমে \angle A, \angle B, ও \angle C এর অনুরূপ কোণ।

আরো লক্ষ করা যায়

$$\frac{AB}{LM} = \frac{BC}{MN} = \frac{CA}{NL} = \boxed{?}$$

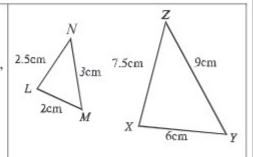
LM, MN ও NL বাহুগুলো যথাক্রমে AB, BC ও CA বাহুর অনুরূপ বাহু।

দুটি ত্রিভুজ বা বহুভুজ সদৃশ হলে

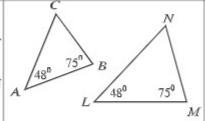
- অনুরূপ কোণগুলো সমান।
- অনুরূপ বাহুগুলো সমানুপাতিক।

সদৃশ চিত্রের বাহুগুলোর অনুপাত দ্বারা মূল চিত্রের তুলনায় অন্য চিত্রের বর্ধন অথবা সঙ্কোচন বোঝায়।
সদৃশ চিত্র একই আকৃতির কিন্তু আকারে সমান নাও হতে পারে। সদৃশ চিত্রের আকার সমান হলে তা
সর্বসম চিত্রে পরিণত হয়। সুতরাং সর্বসমতা সদৃশতার বিশেষ রূপ।

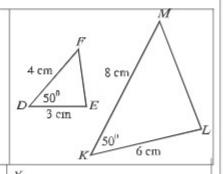
2026

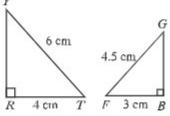

১০-৪ সদৃশ ত্রিভুজ

দুটি সদৃশ ত্রিভুজের অনুরূপ কোণগুলো সমান এবং অনুরূপ বাহুগুলো সমানুপাতিক। দুটি ত্রিভুজ সদৃশ হওয়ার জন্য ন্যুন্তম শর্ত বের করি।


কাজ

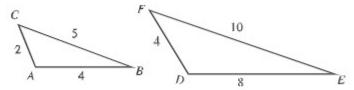
১। তিন-চার জনের দল গঠন করে নিচের কাজগুলো কর:


- ১। (ক) \(\Delta LMN\) ত্রিভুজটি আঁক, যার \(LM = 2\) সে.মি., \(MN = 3\) সে.মি., \(LN = 2.5\) সে.মি.।
 - (খ) ΔXYZ ত্রিভূজটি আঁক, যার XY = 6 সে.মি., YZ = 9 সে.মি., XZ = 7.5 সে.মি.।
 - (গ) △LMIV ও △XYZ ত্রিভুজের অনুরূপ বাহুগুলোর অনুপাত সমান কি?
 - (ঘ) ΔLMN ও ΔXYZ সদৃশ কি?



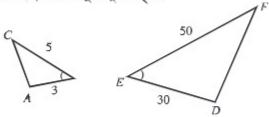
- ২। (ক) △ABC ত্রিভুজটি আঁক, যার ∠A = 48°, ∠B = 75°.
 - (খ) এবার ΔLMN ত্রিভূজটি আঁক, যার $\angle L=48^{\circ}, \angle M=75^{\circ}$.
 - (গ) △ABC ও △LMN সদৃশ কি? কেন?
 - (घ) তোমার আঁকা ত্রিভুজগুলো অন্য শিক্ষার্থীদের আঁকা ত্রিভুজগুলোর সাথে তুলনা কর। সেগুলো কি সদৃশ?

- ৩। (ক) ΔDEF গ্রিভুজটি আঁক, যার DE=3 সে.মি., DF=4 সে.মি. ও অন্তর্ভুক্ত কোণ $\angle D=50^\circ$.
 - (খ) ΔKLM ত্রিভুজটি আঁক, যার KL=6 সে.মি., KM=8 সে.মি. ও অন্তর্ভুক্ত কোণ $\angle K=50^\circ$.
 - (গ) ΔDEF ও ΔKLM ত্রিভুজের অনুর্প বাহুওলো কি সমানুপাতিক?
 - (ঘ) ΔDEF ও ΔKLM সদৃশ কি? ব্যাখ্যা কর।
- 8। (क) $\triangle RTY$ ত্রিভূজটি আঁক, যার RT=4 সে.মি., $\angle R=90^\circ$ ও অতিভূজ TY=6 সে.মি.।
 - (খ) ΔBFG গ্রিভুজটি আঁক, যার BF=3 সে.মি., $\angle B=90^{\circ}$ ও অতিভুজ FG=4.5 সে.মি.।
 - (গ) ΔRTY ও ΔBFG ত্রিভুজের অনুরূপ বাহুগুলোর অনুপাত বের কর। তারা সমান কি?
 - (ঘ) ΔLMN ও ΔXYZ সদৃশ কি?

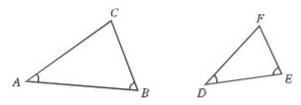


১০-৫ ত্রিভুজের সদৃশতার শর্ত

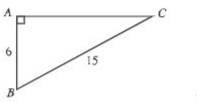
আগের পৃষ্ঠার আলোচনা থেকে আমরা ত্রিভুজের সদৃশতার কতিপয় শর্ত নির্ধারণ করতে পারি। শর্তগুলো নিমূরপঃ

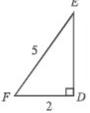

শর্ত ১। (বাহু-বাহু-বাহু)

যদি একটি ত্রিভুজের তিন বাহু অপর একটি ত্রিভুজের তিন বাহুর সমানুপাতিক হয়, তবে ত্রিভুজ দুটি সদৃশ।


শর্ত ২। (বাহু-কোণ-বাহু)

যদি দুটি ত্রিভ্জের একটির দুই বাহু যথাক্রমে অপরটির দুই বাহুর সমানুপাতিক হয় এবং বাহু দুটির অন্তর্ভুক্ত কোণ দুটি পরস্পর সমান হয়, তবে ত্রিভুজ দুটি সদৃশ।


শৰ্ত ৩। (কোণ-কোণ)


যদি দৃটি ত্রিভুজের একটির দুটি কোণ যথাক্রমে অপরটির দুটি কোণের সমান হয়, তবে ত্রিভুজ দুটি সদৃশ।

শৰ্ত ৪। (অতিভূজ-বাহু)

যদি দুটি সমকোণী ত্রিভূজের একটির অতিভূজ ও একটি বাহু যথাক্রমে অপরটির অতিভূজ ও অনুরূপ বাহুর সমানুপাতিক হয়, তবে ত্রিভূজ দুটি সদৃশ।

সর্বসমতা ও সদৃশতা

১০-৬ সদৃশ চতুর্ভুজ

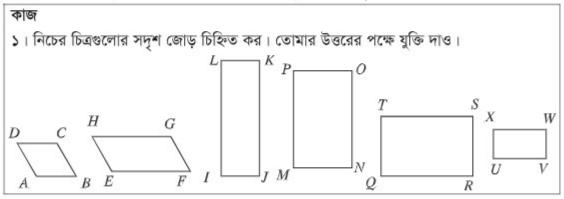
দুটি সদৃশ চতুর্ভুজের অনুরূপ কোণগুলো সমান এবং অনুরূপ বাহুগুলো সমানুপাতিক। দুটি চতুর্ভুজ সদৃশ হওয়ার শর্ত নির্ণয় করি।

কাজ

- ১। তিন-চার জনের দল গঠন করে নিচের কাজগুলো কর:
- (ক) KLMN চতুর্ভুজটি আঁক, যার ∠K = 45°, KL = 3 সে.মি., LM = 2 সে.মি., MN = 3 সে.মি., NK = 2.5 সে.মি.।

[ইঙ্গিত: প্রথমে $\angle K$ কোণটি আঁক এবং কোণের বাহু দুটি থেকে KL ও KN সমান দূরত্বে দুটি বিন্দু চিহ্নিত কর। অতঃপর অপর দুই বাহু আঁক।]

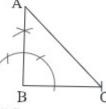
- (খ) WXYZ চতু


 ভ্রাট আঁক, যার WX = 6 সে.মি., XY = 4 সে.মি., YZ = 6 সে.মি., ZW=5 সে.মি., ■
 ∠w=45°. এ চতু

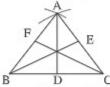
 ভ্রাট কি অনন্য?
- (গ) KLMN ও WXYZ চতুর্জের অনুরূপ বাহুগুলোর অনুপাত সমান কি?
- (ঘ) KLMN ও WXYZ চতুর্ভুজের অনুরূপ কোণগুলো পরিমাপ কর। সেগুলো কি পরস্পর সমান?
- (ঘ) KLMN ও WXYZ সদৃশ কি?

লক্ষণীয় যে, দৃটি সদৃশ চতুর্জুরে

- (ক) অনুরূপ কোণগুলো সমান এবং
- (খ) অনুরূপ বাহুগুলো সমানুপাতিক।


দুটি চতুর্ভুজের অনুরূপ বাহুগুলো সমানুপাতিক হলে চতুর্ভুজ দুটি সদৃশ।

উদাহরণ ১। ABC সমবাহু ত্রিভুজের AD, BE ও CF তিনটি মধ্যমা।


- (ক) একটি সমকোণী সমদ্বিবাহু ত্রিভুজ অঙ্কন কর।
- (খ) দেখাও যে, $\angle A = \angle B = \angle C$
- (গ) প্রমাণ কর যে, AD = BE = CF

ABC সমকোণী সমদ্বিবাহু ত্রিভুজের AB = BC

(엑)

দেওয়া আছে, ABC সমবাহু ত্রিভুজের AB = AC = BC

প্রমাণ করতে হবে যে, $\angle A = \angle B = \angle C$

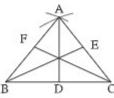
অঙ্কন: AD, BE ও CF তিনটি মধ্যমা অঞ্চন করি।

প্রমাণ: $\triangle ABD$ ও $\triangle ACD$ এ

$$AB = AC$$

AD সাধারণ বাহু

 $: \Delta ABD \cong \Delta ACD$


$$\angle ABD = \angle ACD$$

অর্থাৎ
$$\angle B = \angle C$$

অনুরূপে দেখানো যায় যে,

$$\angle A = \angle B$$

 $\therefore \angle A = \angle B = \angle C$

91

বিঃনিঃ দেওয়া আছে, ABC সমবাহু ত্রিভূজের AD, BE ও CF তিনটি মধ্যমা। প্রমাণ করতে হবে যে, AD=BE=CF. প্রমাণ ঃ AB=AC. $\therefore ABC$ সমবাহু ত্রিভূজ

$$\frac{1}{2}AB = \frac{1}{2}AC$$

 $\mathrm{BF}=\mathrm{CE}\ :: F$ ও E যথাক্রমে AB ও AC এর মধ্যবিন্দু।

ΔBEC & ΔBFC A

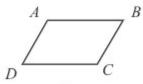
BE = CF

BC = BC সাধারণ বাহু

এবং অন্তর্ভুক্ত $\angle BCE =$ অন্তর্ভুক্ত $\angle CBF :: \angle B = \angle C$

.
$$\Delta BEC \cong \Delta BFC$$

$$BE = CF$$


অনুরুপে দেখানো যায় যে, AD=BE

$$AD = BE = CF$$

(প্রমাণিত)

অনুশীলনী ১০-৩

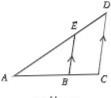
11

চিত্রে ABCD সামান্তরিক। $\angle B =$ কত?

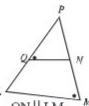
- (季) ∠C
- (₹) ∠D
- (গ) ∠A-∠D
- (\forall) $\angle C \angle D$

 $\triangle ABC$ এ $\angle B > \angle C$ হলে কোনটি সঠিক? 21

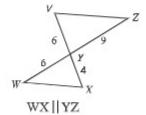
- $(\overline{\Phi})$ BC > AC
- (4) AB > AC
- (গ) AC > BC
- (国) AC > AB

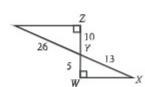

চতুর্ভুজের চার কোণের সমষ্টি কত? 01

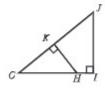
- (ক) ১ সমকোণ
- (খ) ২ সমকোণ
- (গ) ৩ সমকোণ
- (ঘ) ৪ সমকোণ

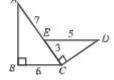

 ΔABC -এ $\angle A=70^\circ, \angle B=20^\circ$ হলে ত্রিভূজটি কী ধরনের? 8 |

- (ক) সমকোণী
- (খ) সমদ্বিবাহু
- (গ) সৃক্ষকোণী
- (ঘ) সমবাহু

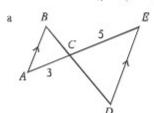

৫। নিচের প্রতিটি চিত্রে ত্রিভুজ দুটির সদৃশতার কারণ বর্ণনা কর।

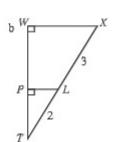



BE||CD



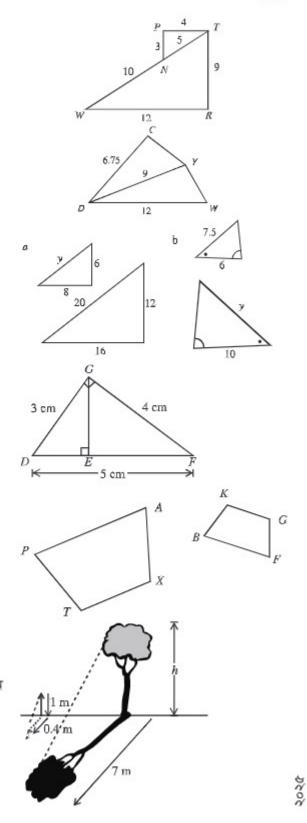
QN||LM





৬। প্রমাণ কর যে, নিচের প্রতিটি চিত্রের ত্রিভুজ দুটি সদৃশ।

৭। দেখাও যে, ΔPTN এবং ΔRWT সদৃশ।


৮। DY রেখাংশ $\angle CDW$ কোণটির দ্বিখণ্ডক। দেখাও যে, ΔCDY ও ΔYDW সদৃশ।

৯। নিচের প্রতিটি সদৃশ ত্রিভুজ জোড়া থেকে yএর মান বের কর।

১০। প্রমাণ কর যে, চিত্রের ত্রিভূজ তিনটি সদৃশ।

১১। চতুর্ভুজ দুটির অনুরূপ কোণ ও অনুরূপ বাহুগুলো চিহ্নিত কর। চতুর্ভুজ দুটি সদৃশ কি-না যাচাই কর।

১২। 1 মিটার দৈর্ঘ্যের একটি লাঠি মাটিতে দণ্ডায়মান অবস্থায় 0.4 মিটার ছায়া ফেলে। একই সময়ে একটি খাড়া গাছের ছায়ার দৈর্ঘ্য 7 মিটার হলে গাছটির উচ্চতা কত?

সর্বসমতা ও সদৃশতা

১৩। ABC সমন্বিবাহু ত্রিভুজের AB=AC এবং D,BC এর মধ্যবিন্দু । DE ও DF যথাক্রমে AC ও AB এর উপর লম্ব ।

- (ক) তথ্যের আলোকে ABC ত্রিভুজটি অঙ্কন করে D বিন্দুটি চিহ্নিত কর।
- (খ) দেখাও যে, AD ⊥ BC
- (গ) প্রমাণ কর যে, DE = DF
- ১৪। ABC সমদ্বিবাহু ত্রিভুজের AB=AC, এর অভ্যন্তরে D এমন একটি বিন্দু যেন BDC সমদ্বিবাহু ত্রিভুজ হয়।
 - ক) বর্ণনা অনুযায়ী চিত্রটি অঙ্কন কর।
 - (খ) প্রমাণ কর যে, ∠ABC = ∠ACB
 - (গ) দেখাও যে, $\triangle ABD \cong \triangle ACD$
- ১৫। $\triangle ABC$ এ AB = AC এবং BE ও CF যথাক্রমে AC ও AB এর উপর লম।
 - ক) বর্ণনা অনুযায়ী চিত্র অঙ্কন কর।
 - (খ) দেখাও যে, $\angle B = \angle C$
 - (গ) প্রমাণ কর যে, BE = CF

একাদশ অধ্যায়

তথ্য ও উপাত্ত

আমরা আগের শ্রেণিতে জেনেছি, পরিসংখ্যান হচ্ছে বিজ্ঞানের একটি শাখা, যা সংখ্যায় উপস্থাপনাযোগ্য তথ্য ও উপাত্তকে সুশৃঙ্খলভাবে সাজিয়ে উপাত্তগুলোর মধ্যে তুলনাকরণ ও সমজাতীয় উপাত্তের মধ্যে সম্পর্ক প্রতিষ্ঠার মাধ্যমে একটি ঘটনাকে খুব অল্প সময়ে পূর্ণাশ্চভাবে সংখ্যাবাচক ব্যাখ্যা দেয়। পরিসংখ্যানে উপাত্তসমূহের বিবরণ এক নজরে চট করে বোঝার জন্য নানা ধরনের লেখচিত্র ও সারণির ব্যবহার করা হয়।

অধ্যায় শেষে শিক্ষার্থীরা –

- গণসংখ্যা সারণি কী তা ব্যাখ্যা করতে পারবে।
- শ্রেণি ব্যবধানের মাধ্যমে অবিন্যস্ত উপাত্ত বিন্যস্তআকারে প্রকাশ করতে পারবে।
- ৯ আয়তলেখ অয়ন করতে পারবে।
- ৯
 অঙ্কিত আয়তলেখ হতে প্রচুরক বের করতে পারবে ।
- ৯ অঙ্কিত আয়তলেখ হতে উপাত্ত সম্পর্কে ব্যাখ্যা করতে পারবে ।

১১-১ তথ্য ও উপাত্ত

ষষ্ঠ শ্রেণিতে আমরা তথ্য ও উপাত্ত সম্বন্ধে জেনেছি। সংখ্যাভিত্তিক কোনো তথ্য বা ঘটনা হচ্ছে একটি পরিসংখ্যান। আর তথ্য বা ঘটনা নির্দেশক সংখ্যাগুলো হচ্ছে পরিসংখ্যানের উপাত্ত। ধরা যাক, কোনো এক পরীক্ষায় সপ্তম শ্রেণিতে অধ্যয়নরত ৩৫জন শিক্ষার্থীর গণিতে প্রাপ্ত নম্বর হলো -

৮০, ৬০, ৬৫, ৭৫, ৮০, ৬০, ৬০, ৯০, ৯৫, ৭০, ১০০, ৯৫, ৮৫, ৬০, ৮৫, ৮৫, ৯০, ৯৮, ৮৫, ৫৫, ৫০, ৯৫, ৯০, ৯০, ৯৮, ৬৫, ৭০, ৭০, ৭৫, ৮৫, ৯৫, ৭৫, ৬৫, ৭৫, ৬৫।

এখানে নম্বরসমূহ এই তালিকা একটি পরিসংখ্যান। সংখ্যা দ্বারা প্রকাশিত যেকোনো তথ্যই পরিসংখ্যানের উপাত্ত।

১১-২ পরিসংখ্যান উপাত্ত

পরিসংখ্যান উপাত্ত দুই ধরনের। যথা,

- (১) প্রাথমিক উপাত্ত বা প্রত্যক্ষ উপাত্ত ও
- (২) মাধ্যমিক উপাত্ত বা পরোক্ষ উপাত্ত।

তথ্য ও উপাত্ত

(১) প্রাথমিক উপাত্ত : পূর্বে বর্ণিত কোনো এক পরীক্ষায় গণিতে প্রাপ্ত নম্বরগুলো প্রাথমিক উপাত্ত। এরূপ উপাত্ত প্রয়োজন অনুযায়ী অনুসন্ধানকারী সরাসরি উৎস থেকে সংগ্রহ করতে পারে। সূতরাং উৎস থেকে সরাসরি যে উপাত্ত সংগৃহীত হয় তাই হলো প্রাথমিক উপাত্ত। সরাসরি সংগৃহীত বিধায় প্রাথমিক উপাত্তের নির্ভরযোগ্যতা অনেক বেশি।

(২) মাধ্যমিক উপাত্ত: পৃথিবীর কয়েকটি শহরের কোনো এক মাসের তাপমাত্রা আমাদের প্রয়োজন। যেভাবে গণিতের প্রাপ্ত নম্বরগুলো আমরা সংগ্রহ করেছি সেভাবে তাপমাত্রার তথ্য আমাদের পক্ষে সংগ্রহ করা সম্ভব নয়। এক্ষেত্রে কোনো প্রতিষ্ঠানের সংগৃহীত উপাত্ত আমরা আমাদের প্রয়োজনে ব্যবহার করতে পারি। সুতরাং এখানে উৎস হচ্ছে পরোক্ষ। পরোক্ষ উৎস থেকে সংগৃহীত উপাত্ত হচ্ছে মাধ্যমিক উপাত্ত। অনুসন্ধানকারী যেহেতু নিজের প্রয়োজন অনুযায়ী সরাসরি উপাত্ত সংগ্রহ করতে পারে না সেহেতু তার নিকট এভাবে সংগৃহীত উপাত্তর নির্ভরযোগ্যতা অনেক কম।

১১-৩ অবিন্যস্ত ও বিন্যস্ত উপাত্ত

অবিন্যস্ত উপাত্ত : পূর্বে বর্ণিত শিক্ষার্থীদের গণিতে প্রাপ্ত নম্বরগুলো হলো অবিন্যস্ত উপাত্ত। এখানে নম্বরগুলো এলোমেলোভাবে আছে। নম্বরগুলো মানের কোনো ক্রমে সাজানো নেই।

বিন্যস্ত উপাত্ত: উপরে বর্ণিত নম্বরগুলো মানের উর্ব্ধক্রম অনুসারে সাজালে আমরা পাই, ৫০, ৫৫, ৬০, ৬০, ৬০, ৬০, ৬৫, ৬৫, ৬৫, ৬৫, ৭০, ৭০, ৭০, ৭৫, ৭৫, ৭৫, ৭৫, ৮০, ৮০, ৮৫, ৮৫, ৮৫, ৮৫, ৮৫, ৯০, ৯০, ৯০, ৯০, ৯৫, ৯৫, ৯৫, ৯৫, ৯৮, ৯৮, ১০০।

এভাবে সাজানো উপাত্তসমূহকে বিন্যস্ত উপাত্ত বলে।

অবিন্যস্ত উপাত্তকে বিন্যস্ত করার সহজ নিয়ম

উপরে বর্ণিত প্রাপ্ত সর্বনিম্ন নম্বর ৫০ এবং সর্বোচ্চ নম্বর ১০০। এখানে নম্বরের ব্যপ্তি হলো (১০০-৫০)। এখন শ্রেণিবিন্যাস করার জন্য ৫০ বা ৫০ এর কম সুবিধাজনক যেকোনো একটি সংখ্যা ধরা যায়। এখানে ৪৬ থেকে শুরু করে প্রতি ৫ নম্বরের ব্যবধানে শ্রেণিবিন্যাস গঠন করা হয়েছে। এক্ষেত্রে শ্রেণিব্যাপ্তি ৫। উপাত্তের সংখ্যার উপর ভিত্তি করে সুবিধাজনক ব্যবধান নিয়ে উপাত্তগুলোকে কতগুলো শ্রেণিতে সাধারণত বিভক্ত করার প্রক্রিয়াই শ্রেণিবিন্যাস।

উপাত্তের সংখ্যার ভিত্তি করে শ্রেণি ব্যবধান সাধারণত সর্বনিমু ৫ ও সর্বোচ্চ ১৫ নির্ধারণ করা হয়। শ্রেণিবিন্যাস শ্রেণির সংখ্যা অর্থ্যাৎ সংখ্যা শ্রেণি নির্ধারণের জন্য নিচে সূত্র ব্যবহার করা হয়।

পরিসর = (বৃহত্তম সংখ্যা – ফুদ্রতম সংখ্যা) + ১

শ্রেণিসংখ্যা দশমিক ভগ্নাংশ হলে পরবর্তী পূর্ণ সংখ্যাটিকে শ্রেণিসংখ্যা হিসেবে বিবেচনা করা হয়। সূতরাং ৪৬ থেকে আরম্ভ করে শ্রেণিব্যাপ্তি ৫ ধরে শ্রেণিবিন্যাস তৈরি করলে শ্রেণিসংখ্যা হবে ১১টি। প্রথমে বামপাশে একটি কলামে নম্বরসমূহের শ্রেণিগুলো লিখতে হবে। এরপর প্রাপ্ত নম্বরগুলো একে একে বিবেচনা করে এবং প্রথম নম্বর যে শ্রেণিতে পড়বে তার জন্য ঐ শ্রেণির ডানে আর একটি কলামে ট্যালি (Tally) চিহ্ন '।' দিই। কোনো শ্রেণিতে যদি চারের বেশি ট্যালি চিহ্ন পড়ে তবে পঞ্চম ট্যালিচিহ্নটি চারটি চিহ্ন জুড়ে আড়াআড়িভাবে দিতে হয়। এভাবে শ্রেণিবিন্যাস শেষ হলে ট্যালিচিহ্ন গণনা করে শ্রেণি অনুযায়ী গণসংখ্যা বা ঘটন সংখ্যা নির্ধারণ করা হয়। এক্ষেত্রে কোনো শ্রেণিতে যতজন ছাত্র অন্তর্ভুক্ত হয়েছে তাই হলো ঐ শ্রেণির ঘটনসংখ্যা বা গণসংখ্যা। গণসংখ্যা সংবলিত সারণিই গণসংখ্যা সারণি। উপরের আলোচনায় বর্ণিত অবিন্যস্ত উপাত্তকে বিন্যস্ত করার গণসংখ্যা:

নম্বরের শ্রেণি (শ্রেণি ব্যবধান/ব্যাপ্তি = ৫)	ট্যাनि চিহ্ন	গণসংখ্যা বা ঘটনসংখ্যা (শিক্ষার্থীর সংখ্যা)
8৬ – ৫০	I	2
33-63	1	2
৫৬ – ৬০	IIII	8
৬১ – ৬৫	IIII	8
৬৬ – ৭০	Ш	•
95 - 96	IIII	8
96 - po	II.	২
b3 - b@	INI	@
৮৬ – ৯০	IIII	8
୬ ℰ − ሬℰ	IIII	8
००८ – ७४	III	•
	মোট	৩৫

তথ্য ও উপাত্ত

উদাহরণ ১। কোনো শহরের জানুয়ারি মাসের ৩১ দিনের তাপমাত্রা (ডিগ্রি সেলসিয়াস) নিচে দেওয়া হলো। গণসংখ্যা সারণি তৈরি কর (তাপমাত্রাগুলো পূর্ণসংখ্যায়)।

20, 56, 58, 25, 55, 58, 52, 50, 56, 56, 52, 58, 56, 56, 52, 58, 56, 20, 22, 50, 50, 50, 58, 52, 56, 20, 22, 58, 26, 20, 50 |

সমাধান : এখানে তাপমাত্রা নির্দেশক সংখ্যাগুলোর মধ্যে ক্ষুদ্রতম সংখ্যা ৯ এবং বৃহত্তম সংখ্যা ২৫। সূতরাং প্রদত্ত উপাত্তের পরিসর = (2e - b) + b = b + 1 সূতরাং শ্রেণি ব্যপ্তি ৫ এর জন্য শ্রেণিসংখ্যা $\frac{b}{e} = b \cdot 8$

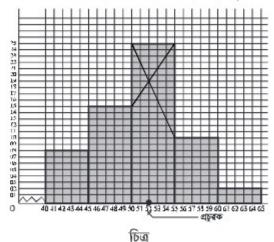
∴ শ্রেণিসংখ্যা হবে 8 ।

প্রদত্ত উপাত্তের গণসংখ্যা সারণি হলো :

তাপমাত্রার শ্রেণি	ট্যালিচিহ্ন	গণসংখ্যা		
৯ – ১৩	ин ии	20		
78 — 7A	т т т	20		
১৯ – ২৩	IM II	٩		
₹8 − ₹ ₩	1	۵		
	মোট	৩১		

কাজ: ১। একটি শ্রেণির ৩০জন করে শিক্ষার্থী নিয়ে এক একটি দল গঠন কর। প্রত্যেক দলের সদস্যদের উচ্চতা (সেন্টিমিটারে) পরিমাপ কর। প্রাপ্ত উপাত্তের গণসংখ্যা সারণি তৈরি কর।

১১-৪ গণসংখ্যা আয়তলেখ


কোনো পরিসংখ্যান যখন লেখচিত্রের মাধ্যমে উপস্থাপন করা হয় তখন তা বোঝা ও সিদ্ধান্ত নেওয়ার জন্য যেমন সহজ হয় তেমনি চিত্তাকর্ষকও হয়। এই প্রেক্ষাপটে পরিসংখ্যানে লেখচিত্রের মাধ্যমে গণসংখ্যা সারণি উপস্থাপন বহুল প্রচলিত পদ্ধতি। আয়তলেখ বা গণসংখ্যা আয়তলেখ হচ্ছে গণসংখ্যা সারণির একটি লেখচিত্র। গণসংখ্যা আয়তলেখ আঁকার জন্য নিচের ধাপগুলো অনুসরণ করা হয়:

- সুবিধাজনক স্কেলে একটি গণসংখ্যা সারণির শ্রেণি ব্যাপ্তি x-অক্ষ বরাবর লেখা হয়।
- সুবিধাজনক ক্ষেলে y-অক্ষ বরাবর গণসংখ্যার মান নেওয়া হয় এবং উভয় আয়তের অক্ষের জন্য একই বা পৃথক সুবিধাজনক ক্ষেল নেওয়া যায়।
- শ্রেণি ব্যপ্তিকে ভূমি ও গণসংখ্যার মানকে আয়তের উচ্চতা ধরে আয়তলেখ অঙ্কন করা হয়।

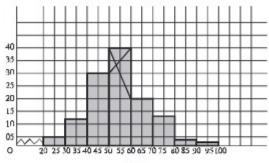
উদাহরণ ২। একটি স্কুলের ১০ম শ্রেণির ৬০জন শিক্ষার্থীর ওজনের (আসন্ন কিলোগ্রাম) গণসংখ্যা সারণি নিচে দেওয়া হলো। গণসংখ্যা সারণি থেকে উপাত্তের আয়তলেখ আঁক এবং আয়তলেখ থেকে প্রচুরক (আসন্ন মান) নির্ণয় কর।

শ্ৰেণি ব্যাপ্তি	80 - 80	80-00	00-00	৫৫ – ৬০	৬০ – ৬৫
গণসংখ্যা	ъ	26	20	20	2

সমাধান: ছক কাগজের (Graph Paper) শ্রেণিব্যাপ্তির জন্য x অক্ষ বরাবর গণসংখ্যার ক্ষুদ্রতম বর্গের প্রতি ঘরকে এক একং গণসংখ্যর জন্য y-অক্ষ বরাবর ক্ষুদ্রতম বর্গের প্রতি ১ ঘরকে ১ একক ধরে গণসংখ্যা আয়তলেখ আঁকা হয়েছে। যেহেতু শ্রেণিব্যাপ্তি x-অক্ষ বরাবর ৪০ থেকে আরম্ভ করা হয়েছে, সেহেতু x-অক্ষের মূল বিন্দু থেকে ৪০ পর্যন্ত ভাঙা চিহ্ন দিয়ে বোঝানো হয়েছে যে, বাকি ঘরগুলো বিদ্যমান আছে।

গণসংখ্যার প্রচুরক ৫০—৫৫ শ্রেণিতে আছে। সূতরাং প্রচুরক এই শ্রেণিতে বিদ্যমান। প্রচুরক নির্ধারণ করার জন্য ঐ আয়তটির উপরিভাগে কৌণিক বিন্দুদ্বয় থেকে দুটি আড়াআড়ি রেখাংশ আগের ও পরের আয়তের উপরিভাগের কৌণিক বিন্দুর সাথে সংযোগ করা হয়। এদের ছেদবিন্দু থেকে সংশ্লিষ্ট ভূমির উপর লম্ব টানা হয়। লম্বটি x-অক্ষের যে বিন্দুতে মিলিত হয় তার সাংখ্যিক মানই প্রচুরক।

নির্ণেয় প্রচুরক ৫২ কেজি।


উদাহরণ ৩। কোনো বিদ্যালয়ের ১০ম শ্রেণিতে অধ্যয়নরত ১২৫জন শিক্ষার্থীর গণিত বিষয়ে প্রাপ্ত নম্বরের গণসংখ্যা বিশ্লেষণ (Frequency Distribution) সারণি নিচে দেওয়া হলো। একটি আয়তলেখ আঁক এবং আয়তলেখ থেকে প্রচুরক (আসন্ন) নির্ণয় কর।

শ্রেণিব্যাপ্তি	২০-৩০	೨೦-8೦	80-00	৫০-৬০	৬০-৭০	90-60	৮০-৯০	90-700
শিক্ষার্থীর সংখ্যা (গণসংখ্যা)	Œ	75	೨೦	80	20	20	9	٤

তথ্য ও উপাত্ত

সমাধান : ছক কাগজে শ্রেণি x অক্ষ বরাবর শ্রেণিব্যাপ্তি এবং y অক্ষ বরাবর গণসংখ্যার জন্য ক্ষুদ্রতম বর্গের প্রতি ঘরকে ৫ একক ধরে আয়তলেখ আঁকা হলো। x–অক্ষে ০ থেকে ২০ পর্যন্ত আছে বোঝাতে ভাঙা

চিহ্ন দেওয়া হয়েছে।

চিত্ৰ

এখানে চিত্রায়িত আয়তলেখ থেকে দেখা যায়, বেশি সংখ্যক শিক্ষার্থীর প্রাপ্ত নম্বর ৫০ থেকে ৬০ এর মধ্যে এবং ছেদ বিন্দু থেকে x অক্ষের উপর যে লম্ব টানা হয়েছে এর ব্যাপ্তি ৫০ ও ৬০ এর মধ্য অবস্থিত। তাই শিক্ষার্থীদের প্রাপ্ত নম্বরে প্রচুরক হলো ৫৪ (প্রায়)।

কাজ: ১। তোমাদের শ্রেণিতে অধ্যয়নরত শিক্ষার্থীদের নিয়ে দুটি দল গঠন কর। দলের নাম দাও। যেমন, শাপলা ও রজনীগন্ধা। কোনো ব্রৈমাসিক/অর্ধবার্ষিক পরীক্ষায়

- (क) শাপলা শিক্ষার্থীর দলের বাংলায় প্রাপ্ত নম্বরের গণসংখ্যা সারণি তৈরি করে আয়তলেখ আঁক।
- (খ) রজনীগন্ধা দলের শিক্ষার্থীর ইংরেজিতে প্রাপ্ত নম্বরের গণসংখ্যা সারণি তৈরি করে আয়তলেখ আঁক এবং উভয় ক্ষেত্রে আয়তলেখ প্রচুরক (আসন্ন) নির্ণয় কর।

অনুশীলনী ১১

- ১। ৫১-৬০ এর শ্রেণিব্যাপ্তি কত?
 - (全) 77
- (약) ১০
- (위) 2
- (ঘ) ৮
- ২। ৬০-৭০ শ্রেণির মধ্যবিন্দু কত?
 - (ক) ৬০
- (약) ৬8
- (গ) ৬৫
- (ঘ) ৭০
- ১ থেকে ১০ পর্যন্ত বিজ্ঞোড় সংখ্যার গড় কত?
 - (季) 0
- (왕)
- (গ) ৬
- (国) b
- ৪। ১০,১২,১৩,১৫,১৬,১৯,২৫ সংখ্যাওলোর মধ্যক কত?
 - (季) 25
- (খ) ১৩
- (위) 3৫
- (되) 3৬
- ৫। সংখ্যাবাচক তথ্যসমূহকে কী বলে?
 - (ক) গণিত
- (খ) বিজ্ঞান
- (গ) তথ্য বিজ্ঞান
- (ঘ) পরিসংখ্যান

নিচের তথ্যের আলোকে ৬ ও ৭ নং প্রশ্নের উত্তর দাও।

৭ম শ্রেণির ১০জন শিক্ষার্থীর দৈনিক খরচ (টাকায়) নিমুরূপঃ ২০, ২২, ৫০, ৪০, ৩২, ২৮, ৪৫, ৩০, ২৫, ৪৮ <u>১৬৮</u>

- ৬। উপাত্তগুলোর পরিসর কত?
 - (ক) ২৯
- (খ) ৩০
- (গ) ৩১
- (ঘ) ৩২
- উপাত্তলোর গড কত?
 - (ক) ২৯
- (খ) ৩০
- (গ) ৩১
- (ঘ) ৩৪
- ৮। উপাত্ত বলতে কী বোঝায় তা উদাহরণের মাধ্যমে লিখ।
- ৯। উপাত্ত কত প্রকারের? প্রত্যেক প্রকারের উপাত্ত কীভাবে সংগ্রহ করা হয় এবং প্রত্যেক প্রকার উপাত্ত সংগ্রহের সবিধা ও অসুবিধা লিখ।
- ১০। অবিন্যস্ত উপাত্ত কী? উদাহরণ দাও।
- ১১। একটি অবিন্যস্ত উপাত্ত লিখ। মানের ক্রমানুসারে সাজিয়ে বিন্যস্ত উপাত্তে রূপান্তর কর।
- ১২। কোনো শ্রেণির ৬০জন শিক্ষার্থীর গণিত বিষয়ে প্রাপ্ত নম্বর নিচে দেওয়া হলো। গণসংখ্যা সারণি তৈরি কর। ৫০, ৮৪, ৭৩, ৫৬, ৯৭, ৯০, ৮২, ৮৩, ৪১, ৯২, ৪২, ৫৫, ৬২, ৬৩, ৯৬, ৪১, ৭১, ৭৭, ৭৮, ২২, ৪৮, ৪৬, ৩৩, ৪৪, ৬১, ৬৬, ৬২, ৬৩, ৬৪, ৫৩, ৬০, ৫০, ৭২, ৬৭, ৯৯, ৮৩, ৮৫, ৬৮, ৬৯, ৪৫, ২২, ২২, ২৭, ৩১, ৬৭, ৬৫, ৬৪, ৬৪, ৮৮, ৬৩, ৪৭, ৫৮, ৫৯, ৬০, ৭২, ৭১, ৭৩, ৪৯, ৭৫, ৬৪।
- ১৩। নিচে ৫০টি দোকানের মাসিক বিক্রয়ের পরিমাণ (হাজার টাকায়) দেওয়া হলো। ৫ শ্রেণিব্যাপ্তি ধরে গণসংখ্যা সারণি তৈরি কর।
 ১৩২, ১৪০, ১৩০, ১৪০, ১৫০, ১৩৩, ১৪৯, ১৪১, ১৩৮, ১৬২, ১৫৮, ১৬২, ১৪০, ১৫০, ১৪৪, ১৩৬, ১৪৭, ১৪৬, ১৫০, ১৪৮, ১৫০, ১৬০, ১৪০, ১৪৬, ১৫৯, ১৪৫, ১৫২, ১৫৭, ১৫৯, ১৩২, ১৬১, ১৪৮, ১৪৬, ১৪২, ১৫৭, ১৫০, ১৭৮, ১৪১, ১৪৯, ১৫১, ১৪৬, ১৪৭, ১৪৪, ১৫৩, ১৩৭, ১৫৪, ১৫২, ১৪৮।
- ১৪। তোমাদের বিদ্যালয়ের ৮ম শ্রেণির ৩০জন ছাত্রের ওজন (কেজিতে) নিচে দেওয়া হলো:
 ৪০, ৫৫, ৪২, ৪২, ৪৫, ৫০, ৫০, ৫৬, ৫০, ৪৫, ৪২, ৪০, ৪৩, ৪৭, ৪৩, ৫০, ৪৬, ৪৫, ৪২,
 ৪৩, ৪৪, ৫২, ৪৪, ৪৫, ৪০, ৪৫, ৪০, ৪৪, ৫০, ৪০।
 - ক) মানের ক্রমানুসারে সাজাও।
 - (খ) উপাত্তের গণসংখ্যা সারণি তৈরি কর।
- ১৫। কোনো এলাকার ৩৫টি পরিবারের লোকসংখ্যা নিচে দেওয়া হলো:
 ৬, ৩, ৪, ৭, ১০, ৮, ৫, ৬, ৪, ৩, ২, ৬, ৮, ৯, ৫, ৪, ৩, ৭, ৬, ৫, ৩, ৪, ৮, ৫, ৯, ৩, ৫, ৭,
 ৬, ৯, ৫,৮, ৪, ৬, ১০।
 শ্রেণিব্যাপ্তি ২ নিয়ে গণসংখ্যা গঠন কর।
- ১৬। ৩০জন শ্রমিকের ঘণ্টা প্রতি মজুরি (টাকায়) নিচে দেওয়া হলো :
 ২০, ২২, ৩০, ২৫, ২৮, ৩০, ৩৫, ৪০, ২৫, ২০, ২৮, ৪০, ৪৫, ৫০, ৪০, ৩৫, ৪০, ৩৫, ২৫,
 ৩৫, ৩৫, ৪০, ২৫, ২০, ৩০, ৩৫, ৫০, ৪০, ৪৫, ৫০।
 শ্রেণি ব্যবধান ৫ নিয়ে গণসংখ্যা সারণি গঠন কর।

তথ্য ও উপাত্ত

১৭। নিচের গণসংখ্যা সারণি হতে আয়তলেখ আঁক এবং প্রচুরক (আসন্ন) নির্ণয় কর:

শ্রেণিব্যাপ্তি	22-50	57-00	o3-80	87-60	৫১-৬০	৬১-৭০	92-20	p2-90	97-700
গণসংখ্যা	20	২০	৩৫	২০	20	20	ъ	¢	9

১৮। আন্তর্জাতিক মানের T-20 ক্রিকেট খেলায় কোনো দলের সংগৃহীত রান এবং উইকেট পতনের পরিসংখ্যান নিচের সারণিতে দেওয়া হলো। আয়তলেখ আঁক।

ওভার	٥	2	9	8	œ	৬	٩	ъ	S	20	22	25	20	78	26	১৬	39	74	79	২০
রান	ب	ъ	30	ъ	25	ъ	৬	25	٩	20	20	25	78	20	b	25	ъ	78	ъ	৬
উইকেট পতন	0	0	0	0	0	٥	0	0	0	0	٥	o	o	٥	٥	٥	٦	o	o	0

[ইঙ্গিত: x-অক্ষ বরাবর ওভার এবং y-অক্ষ বরাবর রান ধরে আয়তলেখ আঁক। যে ওভারে উইকেট পতন হয় সেই ওভারে সংগৃহীত রানের উপরে '●' চিহ্ন দিয়ে উইকেট পতন বোঝান যায়।

১৯। কোনো এক শ্রেণির ৩০জন শিক্ষার্থীর উচ্চতা (সে.মি.) নিচে দেওয়া হলো। উচ্চতার আয়তলেখ আঁক এবং এর থেকে প্রচুরক নির্ণয় কর।

১৪৫, ১৬০, ১৫০, ১৫৫, ১৪৮, ১৫২, ১৬০, ১৬৫, ১৭০, ১৬০, ১৭৫, ১৬৫, ১৮০, ১৭৫, ১৬০, ১৬৫,১৪৫, ১৫৫, ১৭৫, ১৭০, ১৬৫, ১৭৫, ১৪৫, ১৭০, ১৬৫, ১৬০, ১৮০, ১৭০, ১৬৫, ১৫০।

২০। ৭ম শ্রেণির ২০জন ছাত্রের গণিতে প্রাপ্ত নম্বর নিমুরম্নপঃ

৫০, ৬০, ৫২, ৬২, ৪২, ৩২, ৩৫, ৩৬, ৮৫, ৮০, ৮১, ৮২, ৪৭, ৪৬, ৪৮, ৪৩, ৪৯, ৫০, ৫৬, ৮০

- ক) উপাত্ত কত প্রকার ও কী কী?
- খ) ৫ শ্রেণিব্যপ্তি নিয়ে সারণি তৈরি কর।
- গ) প্রাপ্ত সারণি থেকে আয়তলেখ অঙ্কন কর।

উত্তরমালা

অনুশীলনী: ১-১

১। (ক) ১৩, (খ) ২৩, (গ) ৩৯, (घ) ১০৫ ; ২। (क) ১৫, (t) ৩১, (গ) ৬৩ (घ) ১০২ ; ৩। (ক) ৩, (t) ৬, (গ) ৩০, (घ) ৫ ; ৪। (क) ৩, (t) ৬, (የ) 9 ; ৫। ১৫ ; ৬। ২০।

অনুশীলনী: ১.২

১। (খ); ২। (গ); ৩। (ঘ), ৪। (গ); ৫। (গ) ৬। (খ) ৭। (খ) ৮ (খ) ৯। (ক) ১০। (ক) ৭১৪০ (খ) ১৯টি (গ) ১৬; ১১। (ক) ০.৬, (খ) ১.৫, (গ) ০.০৭, (ঘ) ২৫.৩২, (ঙ) ০.০২৪, (চ) ১২.০৩৫; ১২। (ক) ২.৬৫, (খ) ৪.৮২, (গ) ০.১৯; ১৩। (ক) $\frac{5}{b}$, (খ) $\frac{9}{55}$, (গ) ৩ $\frac{6}{52}$, (ঘ) ৫ $\frac{50}{5b}$; ১৪। (ক) ০.৯২৬, (খ) ১.৬৮৩, (গ) ২.৭৭৪; ১৫। ৮৪জন, ৩৯৩জন; ১৬। ৫২জন; ১৭। ৩২জন; ১৮। ৪২টি; ১৯। ২২৫; ২০। ২৫জন; ২১। ১৮, ১৯; ২২। ৪, ৫; ২৩। (ক) পূর্ণবর্গ সংখ্যা নয়

১৮। ৪২টি; ১৯। ২২৫; ২০। ২৫জন; ২১। ১৮, ১৯; ২২। ৪, ৫; ২৩। (ক) পূর্ণবর্গ সংখ্যা নয় (খ) ৩,৬৫৬১ (গ) ২২; ২৪। (ক) ১,২,৪,৮ (খ) ৪২ (গ) কমপক্ষে ১জন সৈন্য যোগ দিলে বর্গাকারে সাজানো যাবে।

অনুশীলনী ২-১

- ১। (ক) ৩ : ৬ :: ৫ : ১০, (খ) ৯ : ১৮ :: ১০ : ২০, (গ) ৭ : ২৮ :: ১৫ : ৬০
 - (ঘ) ১২ : ১৫ :: ২০ : ২৫, (৬) ১২৫ : ২৫ :: ২৫০০ : ৫০০
- ২। (ক) ৬: ১২:: ১২: ২৪, (খ) ২৫: ৪৫:: ৪৫: ৮১, (গ) ১৬: ২৮:: ২৮: ৪৯
 - $(\forall) \frac{\alpha}{9} : 3 :: 3 :: \frac{9}{\alpha}, \ (\&) \ 3 \cdot \alpha : 8 \cdot \alpha :: 8 \cdot \alpha :: 3 \cdot \alpha \cdot \alpha$
- ৩। (ক) ২২, (খ) ৫৬, (গ) ১৪, (ঘ) ৭ ৬, (ঙ) ২.৫
- ৪। (ক) ১৪, (খ) ৫৫, (গ) ৪৮, (ঘ) ১৭ (ছ) ৬-৩০
- ৫। ১০০০ টাকা ৬।৩৮৫০ টি ৭।১০০০ টাকা, ১৪০০ টাকা, ১৮০০ টাকা
- ৮। রুমি পাবে ৩৬০ টাকা, জেসমিন পাবে ৭২০ টাকা এবং কাকলি পাবে ১০৮০ টাকা
- ৯। লাবিব পাবে ৪৫০ টাকা, সামি পাবে ৩৬০ টাকা
- ১০। সবুজ পাবে ১৮০০ টাকা, ভালিম পাবে ৩০০০ টাকা ও লিংকন পাবে ১৫০০ টাকা ১১। ১০ গ্রাম ১২। ২৬:১৯ ১৩।৪০:৭০:৪৯ ১৪।সারা পাবে ৪৮০০ টাকা, মাইমুনা পাবে ৩৬০০ টাকা এবং রাইসা পাবে ১২০০ টাকা ১৫।৬ ষ্ঠ শ্রেণির ছাত্র পাবে ১২০০ টাকা, ৭ম শ্রেণির ছাত্র পাবে ১৪০০ টাকা এবং ৮ম শ্রেণির ছাত্র পাবে ১৬০০ টাকা ১৬।ইউসুফের আয় ২১০ টাকা

অনুশীলনী ২-২

- ১। লাভ ১২৫ টাকা ২। ক্ষতি ১৫০ টাকা ৩। লাভ ২০০ টাকা ৪। লাভ ৫ ১৩ %
- ৫। ৫০ টি চকোলেট ৬।৮০ মিটার ৭।ক্ষতি ৭ $\frac{১9}{১৯}\%$ ৮।লাভ ২৫% ৯।লাভ ৩৩ $\frac{5}{9}\%$
- ১০। ক্ষতি ২০% ১১।৪২০ টাকা ১২।৭৬৩ $\frac{b}{b}$ টাকা ১৩।১৮৮ টাকা ১৪।৫০,০০০.০০ টাকা 🖔 ১৫।১,৭০০ টাকা।

উত্তরমালা 696

অনুশীলনী ২.৩

১।(ক) ২।(ক) ৩।(ঘ) ৪।(ক) ৫।(ক) ৬।(ক) ৭।(খ) ৮।(ঘ) ৯।(ক) ১০।(ক+ঘ),(খ+খ), (গ+ক), (খ+গ) ১১। ৩ দিনে, ১২। ৯ $\frac{6}{6}$ দিনে, ১৩। ৩৫ দিনে, ১৪। ৪৫ জন, ১৫। ১০ $\frac{50}{89}$ দিনে, ১৬। ৭ - ঘন্টায়, ১৭। ৬ কি.মি./ঘন্টা, ১৮। ২ কি.মি./ঘন্টা ১৯। স্থির পানিতে নৌকার বেগ ৮ কি.মি./ঘন্টা, শ্রোতের পানিতে নৌকার বেগ ৪ কি.মি./ঘণ্টা ২০। ৮৪ হেক্টর, ২১। ৪ 💍 ঘণ্টায়, ২২। ৮ মিনিট পর, ২৩। ৩০০ মিটার, ২৪। ৫৪ সেকেও ২৫। (ক) ৩:৬:১০ (খ) ৩০,৬০,১০০ গ্রাম (গ) ৩০ গ্রাম ২৬। (ক) ৬৯ 🕏 টাকা (খ) ৬৯৪ 🕏 টাকা (গ) ৭৬৩ 💆 টাকা।

অনুশীলনী ৩

১। (গ) ২। (ক) ৩। (গ) ৪। (ঘ) ৫। (খ) ৬। (খ) ৭। (গ) ৮। (ক) ০.৪০৩৯ কি.মি (খ) ০.০৭৫২৫ কি.মি ৯। ৫৩.৭ মিটার, ৫৩৭ ডেসিমিটার ১০। (ক) ৩০ বর্গমিটার, (খ) ১৭৫ বর্গসেটিমিটার ১১। দৈর্ঘ্য ৩৭৫ মিটার, প্রস্থ ১২৫ মিটার ১২। ৩০০০০ টাকা ১৩। ২০০০ ব.মি. ১৪। ৯৬ বর্গমিটার ১৫। ৫ মেট্রিক টন ৫০৭ কে.জি. ৭০০ গ্রাম ১৬। ১ মেট্রিক টন ৭৫০ কে.জি. ১৭। ৬৬৬ মেট্রিক টন ৬৬৬ কে.জি. ৬৬৬ 😤 গ্রাম ১৮। ৬১২ কে.জি. ১৯। ১৪৫ কে.জি. ৯৫০ গ্রাম ২০। ১৮০ মগ ২১। ৫৪৯ কে.জি. চাল এবং ১৭২ কে.জি. ৫০০ গ্রাম লবণ ২২। ১৯৫০ টাকা ২৩। ৩৮৪ বর্গমিটার ২৪। দৈর্ঘ্য ২১ মিটার ও প্রস্ত ৭ মিটার ২৫। (খ) ৪৪৪ বর্গ মিটার (গ) ৩৪০০ টাকা ২৬। (খ) ১২০০ বর্গমিটার (গ) ১৩৮.৫৬ মিটার ২৭। (ক) ৫ মিটার (খ) ৬ বর্গমিটার (গ) ৩৪০০০০ বর্গসেন্টিমিটার

অনুশীলনী ৪-১

 $12a^4b > 10axyz = 15a^3x^7y + 8 + -16a^2b^3 = -20ab^4x^3yz = 18p^7q^7$ $9 + 24m^3a^4x^5$ $b + -21a^5b^3x^{10}y^5$ $b + 10x^2y + 15xy^2$ $b + 45x^4y^2 - 36x^3y^3$ $23 + 2a^5b^2 - 3a^3b^4 + a^3b^2c^2$ $22 + x^7v - x^4v^4 + 3x^5v^2z$ $20 + 6a^2 - 5ab - 6b^2$ $38 + a^2 - b^2$ $36 + x^4 - 1$ $36 + a^3 + a^2b + ab^2 + b^3$ $39 + a^3 + b^3$ $3b + x^3 + 3x^2v + 3xv^2 + v^3$ $3b + x^3 - 3x^2v + 3xv^2 - v^3$ $90 + x^3 + 5x^2 + 3x - 9$ $83 + a^4 + a^2b^2 + b^4$ $88 + a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$ $80 + x^4 + x^2y^2 + y^4$ $8 + y^4 + y^2 + 1 + 8 + a^3 + b^3$ অনুশীলনী ৪.২

 $3 + 5a^2 + 8a^3 + 5a^2x^2 + 8 + 7x^3yz + 9a^2yz^2 + 11x^2y$ 9 + 3a - 2b $\Rightarrow + 4x^3y^2 + x^4y$ $\Rightarrow + -b + 3a^4b^4$ $\Rightarrow 9 + 2a^3b - 3ab^2$ $\Rightarrow 3 + 5xy + 4x - 4x^3y^2$ $3x^{6}v^{4} - 2x^{2}vz + z$ $30 + 8ac + 5a^{3}b^{2}c^{4} + 3ab^{4}c^{2}$ $38 + a^{2}b^{2}$ 3c + 3x + 236 + x - 3y $39 + x^2 - xy + y^2$ 36 + a + 2xyz $38 + 8p^3 - 12p^2q + 18pq^2 - 27q^3$ $90 + a^2 - 4a - 16$ 93 + x - 4y $99 + x^2 + 3$ $90 + x^2 + x + 1$ $98 + a^2 - b^2$ 2ab + 3d $2b + x^2y^2 - 1$ $29 + 1 + x - x^3 - x^4$ 2b + x - 5ab 2b + xy% 00 | abc 03 | ax 02 | $9x^2 - 2xy - y^2$ 00 | $4a^2 + 1$ 08 | $x^2 + xy + y^2$ $0e \mid a^3 + 2a^2 + a - 4$

অনুশীলনী ৪.৩

১ + (খ) ৩ + (খ) ৩ + (খ) ৩ + (খ) ৩ + (খ) ৭ + (ক) ৮ + (ঘ) ৯ + (গ) ১০ + (ক) ১১ + (গ) ১০ + (ঘ) ১০ + (ঘ) ১৫ + -21 ১৬ + -9 ১৭ + 37 ১৮ + x - y - a + b ১৯ | 3x + 4y - z + b + 2c ২০ | 2a + 2b - 2c ২১ | 7b - 2a ২২ | 5a - b + 11c ২৩ | 2a + 3b + 28c ২৪ | -10x + 14y - 18z ২৫ | 3x + 2 ২৬ | 2y - 9z ২৭ | 14 - a - 5b ২৮ | 3a - 6b ২৯ | 38b - 6a ৩০ | a - (b - c + d) ৩১ | a - (b + c - d) - m + (n - x) + y ৩২ | $7x + \{-5y - (-8z + 9)\}$ ৩০ | (क) $15x^2 + 2x - 1$ (খ) $75x^3 + 20x^2 - 17x + 2$ (গ) 3x + 2 ৩৪ | (ক) -2xy (খ) $x^4 + x^2y^2 + y^4$ (গ) 0

অনুশীলনী ৫-১

অনুশীলনী ৫-২

অনুশীলনী ৫.৩

উত্তরমালা

অনুশীলনী ৫-৪

১। (খ) ২। (গ) ৩। (ক) ৪। (গ) ৫। (ঘ) ৬। (ক) ৭। (খ) ৮। (ঘ) ৯। (খ) ১০। (গ) ১১। (ঘ) ১২। (ঘ) ১৩। (ঘ) ১৪। (ঘ) ১৫। (ক) ১৬। (গ) ১৭। $3ab^2c$ ১৮। 5ab ১৯। 3a ২০। 4ax ২১। (a+b) ২২। (x-y) ২৩। (x+4) ২৪। a(a+b) ২৫। (a+4) ২৬। (x-1) ২৭। $18a^4b^2cd^2$ ২৮। $30x^2y^3z^4$ ২৯। $6p^2q^2x^2y^2$ ৩০। $(b-c)(b+c)^2$ ৩১। $x(x^2+3x+2)$ ৩২। $5a(9x^2-25y^2)$ ৩৩। $(x+2)(x-5)^2$ ৩৪। $(a+5)(a^2-7a+12)$ ৩৫। $(x-3)(x^2-25)$ ৩৬। x(x+2)(x+5) ৩৭। (ক) 2(2x+1) (খ) $4x^2-12x+9$ (গ) $4x^2+4x-15$, 9 ৩৮। (ক) (x+5)(x-2) (খ) (x+5) (গ) $(x^4-625)(x-2)$ ৩৯। (a+5)(a+5)(x+2) ৩৯। (a+5)(a+5)(x+2)

অনুশীলনী ৬-১

$$3 + \frac{b}{ac} \approx + \frac{a}{b} = 0 + xyz = 8 + \frac{x}{y} = 0 + \frac{2}{3a} = 0 + \frac{2a}{1+2b} = 9 + \frac{1}{2a-3b} = 0 + \frac{a+2}{a-2} \approx + \frac{x-y}{x+y}$$

$$30 + \frac{x-3}{x+4}$$
 $33 + \frac{a^2}{abc}$, $\frac{ab}{abc}$ $32 + \frac{rx}{pqr}$, $\frac{qy}{pqr}$ $30 + \frac{4nx}{6mn}$, $\frac{9my}{6mn}$ $38 + \frac{a(a+b)}{a^2-b^2}$, $\frac{b(a-b)}{a^2-b^2}$

$$3a + \frac{(a+2b)x^2}{a(a^2-4b^2)}, \frac{a(a-2b)y^2}{a(a^2-4b^2)}$$
 $3b + \frac{3a}{a(a^2-4)}, \frac{2(a-2)}{a(a^2-4)}$ $39 + \frac{a}{a^2-9}, \frac{b(a-3)}{a^2-9}$

$$b + \frac{a(a-b)(a-c)}{(a^2-b^2)(a-c)}, \frac{b(a+b)(a-c)}{(a^2-b^2)(a-c)}, \frac{c(a+b)(a-b)}{(a^2-b^2)(a-c)}$$

$$3b + \frac{a^2(a+b)}{a(a^2-b^2)}, \frac{ab(a-b)}{a(a^2-b^2)}, \frac{c(a-b)}{a(a^2-b^2)} \ge 0 + \frac{2(x+3)}{(x+1)(x-2)(x+3)}, \frac{3(x+1)}{(x+1)(x-2)(x+3)}$$

অনুশীলনী ৬-২

১৷ক ২৷ঘ ৩৷গ ৪৷খ ৫৷ঘ ৬৷গ ৭৷খ ৮৷ক ৯৷ক

$$3a+2b$$
 $31 \frac{3}{5x}$ $32 \frac{3bx+2ay}{6ab}$ $30 \frac{2a(2x-1)}{(x+1)(x-2)}$ $38 \frac{a^2+4}{a^2-4}$ $36 \frac{4x-17}{(x+1)(x-5)}$

$$\underset{\infty}{\underbrace{\otimes}} \quad \text{and} \quad \underset{\infty}{\underbrace{2a-4b}} \quad \text{and} \quad \underset{\infty}{\underbrace{2x-4y}} \quad \text{and} \quad \underset{\infty}{\underbrace{ay-2bx}} \quad \text{and} \quad \underset{(x+2)(x+3)}{\underbrace{x}} \quad \text{for} \quad \underset{pr}{\underbrace{(r-p)}},$$

অনুশীলনী ৭-১

অনুশীলনী ৭-২

১। 10 ২। 6 ৩। 12 ৪। 9 ৫। 36 ৬। 20,21,22 ৭। 25,30 ৮। গীতা 52 টাকা, রিতা 58 টাকা, মিতা 70 টাকা ৯। খাতা 53 টাকা, কলম 22 টাকা ১০। 240টি ১১। পিতার বয়স 30 বছর, পুত্রের বয়স 5 বছর ১২। লিজার বয়স 12 বছর, শিখার বয়স 18 বছর ১৩। 37 রান ১৪। 25 কি.মি. ১৫। দৈর্ঘ্য 15 মিটার, প্রস্থ 5 মিটার।

অনুশীলনী ৭.৩

১।খ ২।ক ৩।ক ৪।ঘ ৫।ক ৬।ক ৭।গ ৮।গ ৯।ঘ ১০।গ ১১। A (4,3) B (-2,2) C (3,-4) D (-3,-3) O (0,0) P (5,0) Q (0,5) ১২।(ক) বর্গ (খ) ত্রিভুজ ১৩।(ক) 4 (খ) -2 (গ) 5 (ঘ) -4 (ভ) 2 ১৪।খ. 2 ১৫।ক. (77 - x) কি.মি. খ. 33 গ. ঢাকা থেকে আরিচা: 2 ঘণ্টা 34 মিনিট, আরিচা থেকে ঢাকা: 1 ঘণ্টা 55 মিনিট 30 সেকেভ।

উত্তরমালা

অনুশীলনী ৮

১।ক ২।খ ৩।(১)খ,(২)ঘ,(৩)খ ৪।ঘ ৫।গঙ।ক ৭।খ৮।ক ৯।খ

অনুশীলনী ৯-২

১৷গ ২৷ গ ৩৷গ ৪৷খ ৫৷খঙ৷গ

অনুশীলনী ৯-৩

১।খ ২৷খ ৩৷ক ৪৷ঘ ৫৷গঙ৷খ ৭৷ক ৮৷গ ৯৷খ

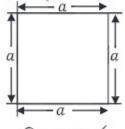
অনুশীলনী ১০.৩

১।খ ২।ঘ ৩।ঘ ৪।ক

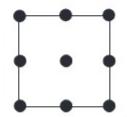
অনুশীলনী ১১

১।খ ২।গ ৩।খ ৪।গ ৫।ঘ ৬।গ ৭।ঘ

পরিশিউ


সপতম শ্রেণির গণিত পাঠ্যবইয়ের প্রথম, নবম ও দশম অধ্যায়ের সাথে সম্পর্কিত কিছু অতিরিন্ত বিষয়বস্তু সংযুক্তি হিসেবে যুক্ত করা হয়েছে। কারণ ২০২৫ সালে সপ্তম শ্রেণিতে অধ্যয়নরত শিক্ষার্থীরা পূর্বতন শ্রেণিতে (ষষ্ঠ শ্রেণি) 'জাতীয় শিক্ষাক্রম ২০২২' অনুযায়ী অধ্যয়ন করেছে। 'জাতীয় শিক্ষাক্রম ২০২২' অনুযায়ী ষষ্ঠ শ্রেণির গণিত পাঠ্যপুস্তকে উক্ত বিষয়বস্তু অত্তর্ভুক্ত ছিল না। তাই শিখনের ধারাবাহিকতা ও কার্যকর শিখনের জন্য উক্ত বিষয়বস্তু সংযুক্ত করা হয়েছে।

উল্লেখ্য যে, সপ্তম শ্রেণির গণিত বিষয়ের শিখনফল অনুযায়ী ধারাবাহিক ও সামষ্টিক মূল্যায়ন অনুষ্ঠিত হবে।


প্রথম অধ্যায় এর সংযুক্তি

বৰ্গ ও বৰ্গমূল

আমরা আগের শ্রেণিতে জেনেছি, যে চতুর্ভুজের চারটি বাহ সমান এবং প্রতিটি কোণ সমকোণ তাকে বর্গ বলা হয় (চিত্র-১.১.১)। আর বর্গের বাহর দৈর্ঘ্য a একক হলে বর্গক্ষেত্রের ক্ষেত্রফল a^2 বা $(a \times a)$ বর্গ একক হবে। বিপরীতভাবে বলা যায়, বর্গক্ষেত্রের ক্ষেত্রফল a^2 বা $(a \times a)$ হলে এর প্রতিটি বাহর দৈর্ঘ্য a একক হবে।

চিত্র ১.১.১: বর্গ

চিত্র ১.১.২: বর্গাকারে মার্বেল সাজানো

উপরের চিত্র ১.১.২ থেকে দেখা যাচ্ছে, সমান দূরতে প্রতিটি সারিতে ৩টি করে এবং ৩টি সারিতে মার্বেল সাজানো হয়েছে। তাই মোট মার্বেলের সংখ্যা (৩ × ৩) = ৩^২ = ৯টি। এখানে প্রতিটি সারিতে মার্বেলের সংখ্যা ৩টি এবং সারির সংখ্যাও ৩টি। তাই মার্বেল সাজানোর চিত্রটি বর্গাকার হয়েছে। সুতরাং ৩ এর বর্গ ৯ এবং ৯ এর বর্গমূল ৩।

উপরের আলোচনা থেকে বলা যায়, কোনো সংখ্যাকে সেই সংখ্যা দ্বারা গুণ করলে যে গুণফল পাওয়া যায় তা ঐ সংখ্যার বর্গ এবং সংখ্যাটি হলো ঐ গুণফলের বর্গমূল। যেমন: $(2 \times 2) = 2^2 = 8$, এখানে $2 \times 2 = 8$, এয়ানে $2 \times 2 = 8$, এয়ানি 2×2

১.২ পূৰ্ণবৰ্গ সংখ্যা

আমরা আগের শ্রেণিতে জেনেছি, স্বাভাবিক সংখ্যা, শূন্য ও ঋণাত্মক সংখ্যা একত্রে মিলে পূর্ণসংখ্যা হয়। তাই নিচের সারণিতে কিছু পূর্ণসংখ্যা দেওয়া আছে, তাদের বর্গ নির্ণয় করো।

পূর্ণসংখ্যা	পূর্ণসংখ্যার বর্গ	পূর্ণসংখ্যা	পূর্ণসংখ্যার বর্গ
۵	$2 \times 2 = 2_{\neq} = 2$	-5	$(-2) \times (-2) = (-2)^2 = 2$
٤	$2 \times 2 = 2^2 = 8$	->	$(-2) \times (-2) = (-2)^2 = 8$
9	$\mathfrak{D} \times \mathfrak{D} = \mathfrak{D}^{2} = \mathfrak{D}$	_0	$(-\varnothing)\times(-\varnothing)=(-\varnothing)^{2}=\varnothing$
8	$8 \times 8 = 8^{2} = 56$	8	$(-8) \times (-8) = (-8)^2 = 56$
Œ	$\alpha \times \alpha = \alpha^2 = 2\alpha$	_@	$(-\mathfrak{C})\times(-\mathfrak{C})=(-\mathfrak{C})^{2}=2\mathfrak{C}$
\b	৬ × ৬ = ৬ ^২ = ৩৬	_৬	(-4) × (-4) = (-4) ² = 0
9	9 × 9 = 9 ² = 8 5	_9	(-9) × (-9) = (-9) ² = 88
	***		****
a	$a \times a = a^2$	-а	$(-a) \times (-a) = (-a)^2 = a^2$

উপরের সারণি থেকে দেখা যাচ্ছে, কিছু কিছু স্বাভাবিক সংখ্যা যেমন: ১, ৪, ৯, ১৬, ২৫, ৩৬, ৪৯, ... ইত্যাদি এদের বৈশিষ্ট্য এমন যে, এ সংখ্যাগুলোকে অন্যকোনো পূর্ণসংখ্যার বর্গ হিসেবে প্রকাশ করা যায়। তাই এদেরকে পূর্ণবর্গ সংখ্যা বলা হয়। সারণি থেকে স্পষ্টত দেখা যাচ্ছে যে, সকল পূর্ণসংখ্যার বর্গ একটি স্বাভাবিক সংখ্যা। আর এই স্বাভাবিক পূর্ণবর্গ সংখ্যাগুলোর বর্গমূল একটি পূর্ণসংখ্যা। যেমন: ৯ একটি পূর্ণবর্গ সংখ্যা এবং এটা একটি স্বাভাবিক সংখ্যা। কিন্তু এর বর্গমূল হলো ৩ ও –৩, যা একটি পূর্ণসংখ্যা।

উপরের আলোচনা থেকে বলা যায়, কোনো একটি স্বাভাবিক সংখ্যা m কে যদি অন্য একটি পূর্ণসংখ্যা n এর বর্গ (n^2) আকারে প্রকাশ করা যায়, তাহলে m কে n এর বর্গ সংখ্যা বলা হয় এবং n কে m এর বর্গমূল বলা হয়।

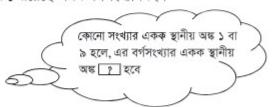
পূর্ণবর্গ সংখ্যার বৈশিষ্ট্য

নিচের সারণিতে ১ থেকে ২০ পর্যন্ত সংখ্যার বর্গ সংখ্যা দেওয়া হয়েছে। খালি ঘরগুলো পূরণ কর।

সংখ্যা	পূর্ণসংখ্যার বর্গ	সংখ্যা	পূৰ্ণসংখ্যার ৰৰ্গ
٥	$2 \times 2 = 2_{\neq} = 2$	22	22 × 22 = 22 ₅ = 252
2	$2 \times 2 = 2^2 = 8$	25	25 × 25 = 25 ₅ =
9	೨ × ೨ = ೨ ^২ = ৯	20	১৩ ×১৩ = ১৩ ^২ = ১৬৯
8	8 × 8 = 8 ² =	28	28 × 28 = 28 ⁵ = 2≥9
œ	$@> x @= x^2 = 2 @$	5@	5€ × 5€ = 5€ ³ =

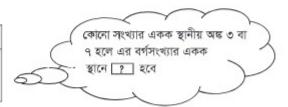
ফর্মা নং-২৩, গণিত-৭ম শ্রেণি

৬	৬ × ৬ = ৬ ^২ = ৩৬	১৬	$29 \times 29 = 26_{3} = 56$
٩	9 × 9 = 9 ² =	59	59 × 59 = 59 ⁵ = 555
ъ	b × b = b ² = 98	24	5₽ × 5₽ = 5₽ ² = ©\$8
9	2 × 2 = 2 ≤ = 2	22	$29 \times 29 = 29 \times 99$
50	20 × 20 = 20 ² =	30	\$0 × \$0 = \$0 ^{\$} =

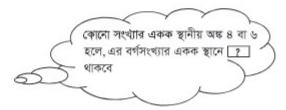

উপরের সারণিভুক্ত পূর্ণবর্গ সংখ্যাগুলো থেকে দেখা যাচ্ছে যে, পূর্ণবর্গ সংখ্যাগুলোর একক স্থানীয় অঞ্চ o, ১, ৪, ৫, ৬ ও ৯। কিন্তু কোনো পূর্ণবর্গ সংখ্যার একক স্থানীয় অঞ্চ ২, ৩, ৭ ও ৮ নেই।

কাজ:

- ১। কোনো সংখ্যার একক স্থানীয় অঞ্জ ০, ১, ৪, ৫, ৬ ও ৯ হলেই কি সংখ্যাটি পূর্ণবর্গ সংখ্যা হবে?
- ২। নিচের সংখ্যাগুলোর কোনগুলো পূর্ণবর্গ সংখ্যা নির্ণয় কর। ২০৬২, ১০৫৭, ২৩৪৫৩, ৩৩৩৩৩, ২৫০০, ৫২৯, ৩০০, ১০৬৮
- ৩। পাঁচটি সংখ্যা লিখ, যার একক স্থানীয় অজ্ঞ দেখেই তা পূর্ণবর্গ সংখ্যা নয় সিদ্ধান্ত নেওয়া যায়।


এবার সারণি থেকে একক স্থানে ১ রয়েছে এমন বর্গসংখ্যা নিই।

বর্গসংখ্যা	সংখ্যা
2	2
47	8
257	22
৩৬১	46


একইভাবে

বর্গসংখ্যা	সংখ্যা
৯	9
85	٩
১৬৯	20

এবং

বৰ্গসংখ্যা	সংখ্যা
১৬	8
৩৬	5
১৯৬	28
২৫৬	26

উপরের আলোচনা থেকে নিচের সিদ্ধান্ত নেওয়া যায়---

- ১। যে সেব সংখ্যার সর্ব ডানদিকের অজ্জ অর্থাৎ একক স্থানীয় অজ্জ যদি ২ বা ৩ বা ৭ বা ৮ হয়, তাহলে সেই সংখ্যাটি পূর্ণবর্গ সংখ্যা নয়।
- ২। যে সব সংখ্যার সর্ব ডানদিকের অঞ্চ অর্থাৎ একক স্থানীয় অঞ্চ যদি ০ বা ১ বা ৪ বা ৫ বা ৬ বা ৯ হয়,

তাহলে সেই সংখ্যাটি পূর্ণবর্গ সংখ্যা হতে পারে। যেমন: ১, ৮১, ৬৪, ২৫, ৩৬, ৪৯, ... ইত্যাদি। আবার নাও হতে পারে। যেমন: ১১, ৮৬, ৯০, ৩৫, ৭৪, ১৯৯, ... ইত্যাদি।

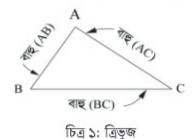
- ৩। যে সব সংখ্যার ডানদিক থেকে বিজোড় সংখ্যক শূন্য থাকে, সেই সংখ্যাটি পূর্ণবর্গ সংখ্যা হতে পারে না। যেমন: ৯০, ৩০০০, ৪০০০০০, ... ইত্যাদি।
- ৪। যে সব সংখ্যার ডানদিক থেকে জোড় সংখ্যক শূন্য থাকে, সেই সংখ্যাটি পূর্ণবর্গ সংখ্যা হতে পারে। যেমন: ১০০, ৪০০, ২৫০০, ... ইত্যাদি। আবার নাও হতে পারে। যেমন: ১৩০০, ৩০০, ৫০০, ... ইত্যাদি।

কাজ:

১। সারণি থেকে পূর্ণবর্গ সংখ্যার একক স্থানীয় অঞ্চে ৪ রয়েছে, এরূপ সংখ্যার জন্য নিয়ম তৈরি কর।

২। নিচের সংখ্যাগুলোর মধ্যে থেকে পূর্ণবর্গ সংখ্যাটির একক স্থানীয় অঞ্জটি কত হবে? ১২৭৩, ১৪২৬, ১৩৬৪৫, ৯৮৭৬৪৭৪, ৯৯৫৮০

উদাহরণ ৬। ৯৭২ এর সাথে কোন ক্ষুদ্রতম সংখ্যা গুণ করলে গুণফল একটি পূর্ণবর্গ সংখ্যা হবে? সমাধান: প্রথমেই ৯৭২ সংখ্যাটির মৌলিক উৎপাদক বিশ্লেষণ করি।


মৌলিক উৎপাদক বিশ্লেষণ করে পাই, ৯৭২ = (২ × ২) × (৩ × ৩) × (৩ × ৩) × ৩ এখন ৯৭২ এর মৌলিক উৎপাদক বিশ্লেষণ থেকে দেখা যাচ্ছে, ২ উৎপাদকটি দুইবার আর ৩ উৎপাদকটি পীচবার আছে অর্থাৎ ৩ উৎপাদকটি বিজোড় সংখ্যক আছে। আমরা জানি, পূর্ণবর্গ সংখ্যার মৌলিক উৎপাদকগুলো জোড়ায় জোড়ায় থাকে। তাই ৩ উৎপাদকটির জোড়া করতে হবে। এ জন্য ৯৭২ কে ৩ দ্বারা গুণ করলে গুণফলটি একটি পূর্ণবর্গ সংখ্যা হবে। সুতরাং নির্দেয় ক্ষুদ্রতম সংখ্যা = ৩

উদাহরণ ৭। ১৫৬৮ এর সাথে কোন ক্ষুদ্রতম সংখ্যা ভাগ করলে গুণফল একটি পুর্ণবর্গ সংখ্যা হবে? সমাধান: প্রথমেই ১৫৬৮ সংখ্যাটির মৌলিক উৎপাদক বিশ্লেষণ করি।

মৌলিক উৎপাদক বিশ্লেষণ করে পাই, ১৫৬৮ = (২ \times ২) \times (২ \times ২) \times ২ \times (৭ \times ৭) এখন ১৫৬৮ এর মৌলিক উৎপাদক বিশ্লেষণ থেকে দেখা যাচ্ছে, ২ উৎপাদকটি পাঁচবার আর ৭ উৎপাদকটি দুইবার আছে অর্থাৎ ২ উৎপাদকটি বিজোড় সংখ্যক আছে। আমরা জানি, পূর্ণবর্গ সংখ্যার মৌলিক উৎপাদকগুলো জোড়ায় জোড়ায় থাকে। তাই ২ উৎপাদকটির জোড়া করতে হবে। সুতরাং ১৫৬৮ কে ২ দ্বারা পু ভাগ করলে ভাগফলটি একটি পূর্ণবর্গ সংখ্যা হবে।
সূতরাং নির্ণেয় ক্ষুদ্রতম সংখ্যা = ২

নবম অধ্যায় এর সংযুক্তি

আমরা আগের শ্রেণিতে জেনেছি, তিনটি সরলরেখাংশ দ্বারা আবদ্ধ চিত্রকে ত্রিভুজ বলে [চিত্র ১]।

১. চিত্র ১ থেকে দেখা যাচ্ছে, AB, BC ও AC এই তিনটি সরলরেখাংশ দিয়ে একটি ত্রিভুজ ABC গঠিত হয়েছে। তাই AB, BC ও AC এই প্রত্যেকটি রেখাংশই ত্রিভুজ ABC এর বাহু (side)।

যে তিনটি সরলরেখাংশ দিয়ে ত্রিভুজ গঠিত হয় তাদের প্রত্যেকটিকে ঐ ত্রিভুজের বাহ (side) বলা হয়।

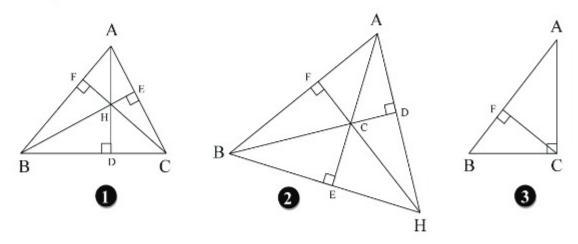
২. চিত্রে দেখা যাচ্ছে, AB ও AC বাহ দুইটি পরস্পর A বিন্দুতে; AB ও BC বাহ দুটি পরস্পর B বিন্দুতে এবং AC ও BC বাহদ্বয় পরস্পর C বিন্দুতে ছেদ করেছে। তাই A, B, C এই প্রতিটি বিন্দুকেই ΔABC এর শীর্ষবিন্দু বলা হয়। ইংরেজি বড়ো হাতের অক্ষর ও শীর্ষবিন্দু দিয়ে ত্রিভুজের নামকরণ করা হয়। যেমন: চিত্রের ত্রিভুজের শীর্ষবিন্দুগুলো হলো A, B, C. তাই চিত্রের ত্রিভুজের নামকরণ ΔABC করা হয়েছে।

যেকোনো ব্রিভুজের দুটি বাহ পরস্পর যে বিন্দুতে ছেদ করে সেই বিন্দুকে ঐ ব্রিভুজের শীর্ষবিন্দু (vertex) বলা হয়। ব্রিভুজের শীর্ষবিন্দুর নামানুসারে ব্রিভুজের নামকরণ করা হয়।

৩. চিত্রে দেখা যাচ্ছে, A, B ও C শীর্ষবিন্দু তিনটিতে যথাক্রমে ∠BAC, ∠ABC ও ∠ACB উৎপন্ন করেছে। এই প্রত্যেকটি কোণকে ∆ABC এর শীর্ষকোণ (vertical angle) বলা হয়। কখনো কখনো এটিকে শিরঃকোণও বলা হয়। যেহেতু যেকোনো ব্রিভুজের শীর্ষবিন্দু তিনটি তাই প্রত্যেকটি ব্রিভুজের তিনটি শীর্ষবিন্দু উৎপন্ন হয়।

যেকোনো ব্রিভুজের শীর্ষবিন্দুতে যে কোণ উৎপন্ন হয়, তাকে ঐ ব্রিভুজের শীর্ষকোণ বলা হয়। যেহেতু যেকোনো ব্রিভুজের শীর্ষবিন্দু তিনটি তাই প্রত্যেকটি ব্রিভুজের তিনটি শীর্ষকোণ উৎপন্ন হয়।

৯.১ ত্রিভুজের মধ্যমা


মনে করি, ABC যেকোনো একটি ত্রিভুজ, যার A, B ও C তিনটি শীর্ষবিন্দুতে উৎপন্ন কোণগুলো যথাক্রমে ∠BAC, ∠ABC ও ∠ACB এবং বাহ তিনটি হলো AB, BC ও AC।

এখন $\triangle ABC$ এর তিনটি বাহ AB, BC ও AC এর মধ্য বিন্দুগুলো যথাক্রমে D, E ও F নির্ণয় করি [চিত্র ২] এবং প্রতিটি বাহর মধ্য বিন্দু ও তার বিপরীত শীর্ষবিন্দু সংযোগ করি। এতে $\triangle ABC$ এ AD, BE ও CF এই তিনটি সরলরেখাংশ পাওয়া যাচ্ছে। AD, BE ও CF এই তিনটি রেখাংশের প্রত্যেকটিকে $\triangle ABC$ এর মধ্যমা বলা হয়।

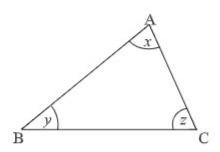
যেকোনো ত্রিভুজের যেকোনো শীর্ষবিন্দু থেকে তার বিপরীত বাহুর মধ্যবিন্দুর সংযোগ সরলরেখাংশকে ঐ ত্রিভুজের মধ্যমা বলা হয়।

৯.২ ত্রিভুজের উচ্চতা

মনে করি, ABC যেকোনো একটি গ্রিভুজ, যার A, B ও C তিনটি শীর্ষবিন্দু এবং তার তিনটি বাহ AB, BC ও AC। এখন ΔABC এর তিনটি শীর্ষবিন্দু A, B ও C থেকে তার বিপরীত বাহর উপর বা বর্ধিতাংশের উপর লম্ব আঁকি।

চিত্র ৯.২: ত্রিভুজের উচ্চতা

- ১. চিত্র ৯.২ (1) থেকে দেখা যাচ্ছে যে, △ABC এর তিনটি শীর্ষবিন্দু A, B, C হতে তাদের বিপরীত বাহ যথাক্রমে BC, AC, AB এর উপর AD, BE, CF লম্ব আঁকা সম্ভব হয়েছে।
- ২. চিত্র ৯.২ (2) থেকে দেখা যাছে যে, ΔABC এর শীর্ষবিন্দু C হতে এর বিপরীত বাহ AB এর উপর CF লম্ব আঁকা সম্ভব হয়েছে। কিন্তু শীর্ষবিন্দু A ও B হতে তাদের বিপরীত বাহ যথাক্রমে BC, AC এর উপর AD, BE লম্ব আঁকা সম্ভব হয়িন। তবে BC ও AC বাহুর বর্ষিতাংশের উপর AD, BE লম্ব আঁকা সম্ভব হয়েছে।

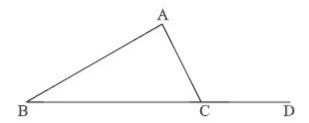

৩. চিত্র ৯.২ (3) থেকে দেখা যাচ্ছে যে, ΔABC এর তিনটি শীর্ষবিন্দু A, B, C হতে তাদের বিপরীত বাহ যথাক্রমে BC, AC ও AB এর উপর AD, BE ও CF লম্ব আঁকা সম্ভব হয়েছে। তবে A ও B থেকে তার বিপরীত বাহ যথাক্রমে BC ও AC এর উপর AC ও BC নিজেরাই লম্ব।

একটি ত্রিভুজের তিনটি শীর্ষবিন্দু থাকে। তাই শীর্ষবিন্দুগুলো থেকে বিপরীত বাহর উপর বা তার বর্ধিতাংশের উপর তিনটি লম্ব আঁকা যায়। এই প্রত্যেকটি লম্বকেই ABC ত্রিভুজের উচ্চতা বলা যায়। তবে যে বাহকে ভূমি বিবেচনা করা হয় সেই বাহর বা বাহর বর্ধিতাংশের উপরের লম্বকেই ঐ ত্রিভুজের উচ্চতা বিবেচনা করা হয়।

যেকোনো ব্রিভুজের ভূমির বিপরীত শীর্ষবিন্দু হতে ভূমির উপর বা ভূমির বর্ষিতাংশের উপর অঞ্চিত লম্বকে ঐ ব্রিভুজের উচ্চতা বলা হয়। আর কোনো ব্রিভুজের যে বিন্দুতে উচ্চতা বা তার বর্ষিতাংশ তিনটি পরস্পরকে ছেদ করে সেই বিন্দুকে লম্ববিন্দু বলা হয়।

৯.৩ ত্রিভুজের অন্তঃস্থ ও বহিঃস্থ কোণ

ধরি, যেকোনো একটি ত্রিভুজ ABC, যার তিনটি বাহ AB, BC ও AC।



উপরের চিত্রের ∆ABC এর ভিতরের দিকে তিনটি শীর্ষবিন্দুতে ∠BAC, ∠ABC ও ∠ACB উৎপন্ন করেছে। এই কোণ তিনটিকে ত্রিভূজের অন্তঃস্থকোণ বলা হয়।

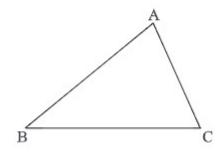
যেকোনো ব্রিভুজের তিনটি শীর্ষবিন্দুতে ব্রিভুজের ভিতরের দিকে যে তিনটি কোণ উৎপন্ন হয় তাদেরকে ব্রিভুজের অন্তঃস্থকোণ বলা হয়।

ত্রিভুজের বহিঃস্থ কোণ

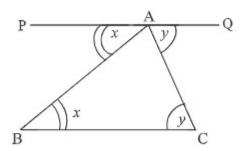
মনে করি, যেকোনো একটি ত্রিভুজ ABC, যার তিনটি বাহ AB, BC ও AC এবং তিনটি কোণ $\angle ABC$, $\angle ACB$ ও $\angle BAC$ । এখন $\triangle ABC$ এর যেকোনো একটি বাহ BC কে D পর্যন্ত বর্ধিত করি। এতে $\triangle ABC$ এর বাইরের দিকে $\angle ACD$ উৎপন্ন হয়েছে। এই কোণকে কী কোণ বলব?

 $\triangle ABC$ এর $\angle ABC$, $\angle ACB$ ও $\angle BAC$ কে অন্তঃস্থ কোণ বলা হয়। আর $\angle ACD$ কে বহিঃস্থ কোণ বলা হয়।

যেকোনো ত্রিভুজের যেকোনো বাহকে যেকোনো দিকে বর্ধিত করলে বাইরের দিকে যে কোণ উৎপন্ন হয় তাকে ঐ ত্রিভুজের বহিঃস্থ কোণ বলা হয়।


উপরের চিত্রে দেখা যাচ্ছে, বহিঃস্থ $\angle ACD$ এর সন্নিহিত কোণ হলো $\angle ACB$ । কিন্তু $\angle ABC$ ও $\angle BAC$ কোণ দুটিকে কী কোণ বলব?

∆ABC এ, ∠ABC ও ∠BAC কোণ দুটিকে বহিঃস্থ ∠ACD এর অন্তঃস্থ বিপরীত কোণ বলা হয়।


যেকোনো ত্রিভুজের বহিঃস্থ কোণের সন্নিহিত কোণ ছাড়া ত্রিভুজের অভ্যন্তরে যে দুটি কোণ থাকে তাদেরকে ঐ বহিঃস্থ কোণের অন্তঃস্থ বিপরীত কোণ বলা হয়।

ত্রিভুজের তিন কোণের সমষ্টি

মনে করি, যেকোনো একটি ত্রিভুজ ABC, যার তিনটি কোণ $\angle ABC$, $\angle ACB$ ও $\angle BAC$ । এখানে $\triangle ABC$ এর তিনটি কোণের সমষ্টি অর্থাৎ ($\angle ABC + \angle ACB + \angle BAC$) নির্ণয় করতে হবে।

অঞ্চন: A বিন্দু দিয়ে BC || PQ আঁকি।

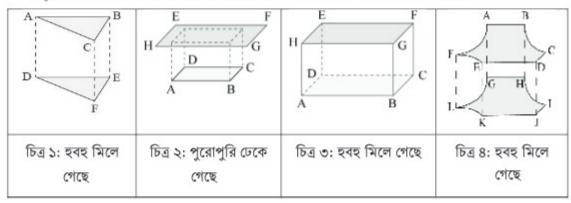
চিত্র থেকে দেখা যাচ্ছে, $BC \parallel PQ$ এবং এদের ছেদক AB। তাই ছেদক বিপরীত পাশে উৎপন্ন $\angle ABC$ ও $\angle PAB$ একান্তর কোণ দুটি সমান। অর্থাৎ $\angle ABC = \angle PAB = x$... (i) আবারো দেখা যাচ্ছে, $BC \parallel PQ$ এবং এদের ছেদক AC। তাই ছেদকের বিপরীত পাশে উৎপন্ন $\angle ACB$ ও $\angle QAC$ একান্তর কোণ দুটি সমান। অর্থাৎ $\angle ACB = \angle QAC = y$... (ii) আবার PQ রেখার A বিন্দুতে AB রেখা ছেদ করায় $\angle BAP$ ও $\angle BAQ$ দুইটি সন্নিহিত কোণ উৎপন্ন করেছে। তাই আমরা লিখতে পারি:

 $\angle BAP + \angle BAQ = 180^\circ$ $\angle BAP + \angle BAC + \angle CAQ = 180^\circ$ [$\angle BAC + \angle CAQ = \angle BAQ$] $\angle ABC + \angle BAC + \angle ACB = 180^\circ$ অর্থাৎ $\triangle ABC$ এর তিনটি অন্তঃস্থ কোণের সমষ্টি 180° বা দুই সমকোণ।

যেকোনো ত্রিভুজের তিনটি অন্তঃস্থ কোণের সমষ্টি 180° এবা দুই সমকোণ। এটা ইউক্লিডের প্রতিজ্ঞা ৩২।

দশম অধ্যায় এর সংযুক্তি

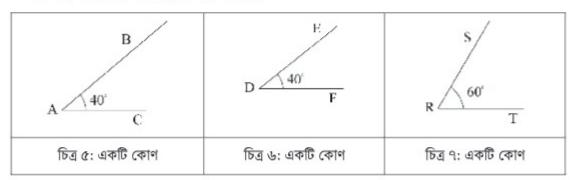
আমাদের চারদিকে বিভিন্ন আকৃতি (shape) ও আকার (size) এর বস্তু দেখতে পাই। তাই এই দুটি জিনিস নিয়ে পরিক্ষার ধারণা থাকা দরকার। তাই নিচের চিত্রগুলো ভালো করে দেখি।


- চিত্র 1 ও 2 এর আকৃতি ভিন্ন ভিন্ন কিন্তু আকার একই। অর্থাৎ ছবি দুটি পরিমাপের দৃষ্টিতে সমান কিন্তু দেখতে আলাদা।
- ২. চিত্র 3 ও 4 এর আকৃতি একই কিন্তু আকার ভিন্ন ভিন্ন। অর্থাৎ ছবি দুটি দেখতে একই রকম কিন্তু পরিমাপের দৃষ্টিতে আলাদা। এই ধরনের জিনিসগুলোকে পরস্পরের সদৃশ বলা হয়।
- চত্র 5 ও 6 এর আকৃতি ও আকার উভয়ই একই। অর্থাৎ ছবি দুটি দেখতে একই রকম এবং পরিমাণগত
 দিক থেকেও সমান। তাই এরা দেখতে হবহ সমান। এই ধরনের জিনিসগুলোকে পরস্পরের সর্বসম বলা
 হয়।

এই অধ্যায়ে আমরা জ্যামিতির দুটি অত্যন্ত পুরুত্বপূর্ণ ধারণা- সর্বসমতা ও সদৃশতা নিয়ে আলোচনা করব। তবে আমরা শুধুমাত্র সমতলীয় সর্বসমতা ও সদৃশতা মধ্যেই আলোচনা সীমিত রাখব।

১০.১ সর্বসমতা

নিচের সমতলীয় চিত্রগুলো দেখে তাদের আকার ও আকৃতি নিয়ে আলোচনা করি।

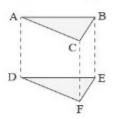

১. পুরোপুরি ঢাকা হচ্ছে, কোনো ছোটো জিনিসকে তারচেয়ে বড় জিনিস দিয়ে ঢেকে দেওয়া। এখানে চিত্র ২-এ দেখা যাছে, ABCD তলের সম্পূর্ণ অংশকে EFGH তল দ্বারা ঢাকা হয়েছে। বিপরীতভাবে বলা যায় EFGH তলের কিছু অংশকে ABCD তল দ্বারা ঢাকা হয়েছে। তাই বলা যায়, এই দুটি চিত্র আকৃতিতে একই হলেও আকারে ভিন্ন ভিন্ন। একারণে ABCD ও EFGH সর্বসম নয়।

ফর্মা নং-২৩, গণিত-৭ম শ্রেণি

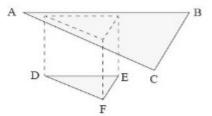
২. হবহ ঢাকা বা স্বতোভাবে মিলার যাওয়ার অর্থ হচ্ছে, কোনো একটি জিনিসের প্রতিটি বিন্দুর সাথে অন্য একটি জিনিস মিলে যাওয়া। এখানে চিত্র ১, ৩, ৪ থেকে যথাক্রমে দেখা যাছে, ABC তলটি DEF দ্বারা, ABCD তলটি EFGH দ্বারা ও ABCDEF তলটি GHIJKL দ্বারা হবহ ঢেকে বা সর্বতোভাবে মিলে গেছে। তাই এই চিত্রগুলোর আকৃতি ও আকার উভয়ই একই। একারণে এগুলো সর্বসম ও সর্বদা সমান।

- ৩. চিত্র ৩ থেকে দেখা যাছে, AB রেখাংশটি GH রেখাংশ দ্বারা হবহু ঢেকে বা সর্বতোভাবে মিলে গেছে তাই AB ও GH পরস্পর সর্বসম। আবার চিত্র ২ থেকে দেখা যাছে, AB রেখাংশটি GH দ্বারা আংশিকভাবে ঢেকে গেছে AB ও GH পরস্পর সর্বসম নয় এবং দৈর্ঘ্যও অসমান। সুতরাং বলা যায়, দুটি রেখাংশের দৈর্ঘ্য সমান হলেই তারা পরস্পর সর্বসম হবে।
- 8. চিত্র ৫ ও ৬ থেকে যথাক্রমে দেখা যাচ্ছে, $\angle ABC = 40^\circ$ ও $\angle DEF = 40^\circ$ তাই $\angle ABC = \angle DEF$ অর্থাৎ কোণ দুটির মান সমান। দুটো কোণের মান সমান হলে তাদের পরস্পরকে হবহ ঢাকা বা স্বতোভাবে মিলে যায়। একারণে তারা পরস্পর স্বসম ও সমান। আবার চিত্র ৬ ও ৭ থেকে যথাক্রমে দেখা যাচ্ছে, $\angle DEF = 40^\circ \neq \angle RST = 60^\circ$ অর্থাৎ কোণ দুটির মান অসমান। তাই দুটি কোণের মান অসমান হওয়ায় তারা পরস্পরকে হবহ ঢাকা বা স্বতোভাবে মিলে যাচ্ছে না। এ কারণে তারা পরস্পর স্বস্ম নয় ও তারা পরস্পর অসমান।

উপরের উদাহরণগুলো থেকে বলা যায়, একটি বন্ধুর সাথে অপর একটি বন্ধু দ্বারা হবহ ঢাকা বা সর্বতোভাবে মিলে যায়, তাহলে ঐ বন্ধু দুটিকে প্রস্পরের সর্বসম বলা হয়।


যখন একটি বস্তুর সাথে অপর একটি বস্তু দারা হবহ ঢাকা বা সর্বতোভাবে মিলে যায়, তখন ঐ বস্তু দুটিকে পরস্পরের সর্বসম বলা হয়। অন্যভাবে, যখন দুটি বস্তুর আকৃতি ও আকার উভয়ই একই রকম হয়, তখন সেই বস্তু দুটিকে সর্বসম বলা হয়।

এখন যদি ABCD ও EFGH পরস্পর সর্বসম হয়, তহলে আমরা $ABCD\cong EFGH$ এভাবে লিখে প্রকাশ করি। এর অর্থ হলো ABCD ও EFGH পরস্পর সর্বসম।


১০.২ ত্রিভুজের সর্বসমতা

 পরের পৃষ্ঠার চিত্র ১ থেকে দেখা যাচ্ছে, △ABC ও △DEF পরস্পরের সাথে হবহ বা সর্বতোভাবে মিলে গেছে এবং দুটি ত্রিভুজের আকার ও আকৃতি উভয়ই একই রকমের হয়, তাই ত্রিভুজ দুটিকে সর্বসম বলা হয়।

অন্যভাবে বলা যায়, একটি ব্রিভুজ দিয়ে অন্য আরেকটি ব্রিভুজকে যদি হবহ বা সর্বতোভাবে মিলে যায়, তাহলে ব্রিভুজ দুটিকে সর্বসম বলা হয়। এখানে হবহ বা সর্বতোভাবে মিলে যাওয়ার অর্থ হলো কোনো একটি ব্রিভুজের প্রতিটি বিন্দুর সাথে অন্য একটি ব্রিভুজের প্রতিটি বিন্দুর হবহ বা সর্বতোভাবে মিলে যাওয়া বুঝায়। তাই দুটি ব্রিভুজ যদি সর্বসম হয়, তাহলে ঐ ব্রিভুজ দুটির অনুরূপ বাহগুলো ও অনুরূপ কোণগুলো পরস্পর সমান হয়ে যায়।

চিত্র ১: হবহ মিলে গেছে

চিত্র ২: পুরোপুরি ঢাকা

১. উপরের চিত্র ২ থেকে দেখা যাচ্ছে, ΔABC ও ΔDEF পরস্পরের সাথে হবহ বা সর্বতোভাবে মিলে যায়নি এবং দুটি ত্রিভুজের আকৃতি একই হলেও আকার ভিন্ন ভিন্ন ত্রিভুজ দুটি সর্বসম নয়।

দুটি ব্রিভুজের যদি আকার ও আকৃতি উভয়ই একই রকমের হয়, তাহলে ব্রিভুজ দুটিকে সর্বসম বলা হয়। আর যদি দুটি ব্রিভুজ সর্বসম হয়, তাহলে ঐ ব্রিভুজ দুটির অনুরূপ বাহগুলো ও অনুরূপ কোণগুলো পরস্পর সমান হয়ে যায়।

এখন যদি ΔABC ও ΔDEF পরস্পর সর্বসম হয়, তহলে আমরা $\Delta ABC\cong \Delta DEF$ এভাবে লিখে প্রকাশ করি। এর অর্থ হলো ΔABC ও ΔDEF পরস্পর সর্বসম।

এবার ত্রিভুজের সর্বসমতা প্রমাণের জন্য কী তথ্য প্রয়োজন? এ জন্য দলগতভাবে নিচের কাজটি কর:

কাজ:

- △ABC ও △DEF দুটি গ্রিভুজ আঁক, যাদের AB = DE = 5 সেমি, BC = EF = 6 সেমি

 এবং ∠ABC = ∠DEF = 60°।
- ২. ব্রিভুজ দুটির তৃতীয় বাহর দৈর্ঘ্য এবং অন্য কোণ দুটি পরিমাপ কর।
- তামাদের পরিমাপগুলো তুলনা কর। এখান থেকে কি কিছু দেখতে পাছ?

২০২৫ শিক্ষাবর্ষ

আলস্য দোষের আকর।

তথ্য, সেবা ও সামাজিক সমস্যা প্রতিকারের জন্য '৩৩৩' কলসেন্টারে ফোন করুন।

নারী ও শিশু নির্যাতনের ঘটনা ঘটলে প্রতিকার ও প্রতিরোধের জন্য ন্যাশনাল হেল্পলাইন সেন্টারের ১০৯ নম্বর-এ (টোল ফ্রি, ২৪ ঘণ্টা সার্ভিস) ফোন করুন।